Evolution of lattice strains in three dimensions during in situ compression of textured Zircaloy-2

2007 ◽  
Vol 15 (2) ◽  
pp. 121-130 ◽  
Author(s):  
F. Xu ◽  
R. A. Holt ◽  
E. C. Oliver ◽  
M. R. Daymond
Author(s):  
Dong-Feng Li ◽  
Noel P. O’Dowd ◽  
Catrin M. Davies ◽  
Shu-Yan Zhang

In this study, the deformation behavior of an austenitic stainless steel is investigated at the microscale by means of in-situ neutron diffraction (ND) measurements in conjunction with finite-element (FE) simulations. Results are presented in terms of (elastic) lattice strains for selected grain (crystallite) families. The FE model is based on a crystallographic (slip system based) representation of the deformation at the microscale. The present study indicates that combined in-situ ND measurement and micromechanical modelling provides an enhanced understanding of the mechanical response at the microscale in engineering steels.


2019 ◽  
Vol 336 ◽  
pp. 169-173 ◽  
Author(s):  
Amélie Rochet ◽  
Ana Flávia Suzana ◽  
Aline R. Passos ◽  
Tiago Kalile ◽  
Felisa Berenguer ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jérôme Carnis ◽  
Aseem Rajan Kshirsagar ◽  
Longfei Wu ◽  
Maxime Dupraz ◽  
Stéphane Labat ◽  
...  

AbstractAt the nanoscale, elastic strain and crystal defects largely influence the properties and functionalities of materials. The ability to predict the structural evolution of catalytic nanocrystals during the reaction is of primary importance for catalyst design. However, to date, imaging and characterising the structure of defects inside a nanocrystal in three-dimensions and in situ during reaction has remained a challenge. We report here an unusual twin boundary migration process in a single platinum nanoparticle during CO oxidation using Bragg coherent diffraction imaging as the characterisation tool. Density functional theory calculations show that twin migration can be correlated with the relative change in the interfacial energies of the free surfaces exposed to CO. The x-ray technique also reveals particle reshaping during the reaction. In situ and non-invasive structural characterisation of defects during reaction opens new avenues for understanding defect behaviour in confined crystals and paves the way for strain and defect engineering.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Wen Chen ◽  
Thomas Voisin ◽  
Yin Zhang ◽  
Jean-Baptiste Florien ◽  
Christopher M. Spadaccini ◽  
...  

Abstract Additively manufactured (AM) metallic materials commonly possess substantial microscale internal stresses that manifest as intergranular and intragranular residual stresses. However, the impact of these residual stresses on the mechanical behaviour of AM materials remains unexplored. Here we combine in situ synchrotron X-ray diffraction experiments and computational modelling to quantify the lattice strains in different families of grains with specific orientations and associated intergranular residual stresses in an AM 316L stainless steel under uniaxial tension. We measure pronounced tension–compression asymmetries in yield strength and work hardening for as-printed stainless steel, and show they are associated with back stresses originating from heterogeneous dislocation distributions and resultant intragranular residual stresses. We further report that heat treatment relieves microscale residual stresses, thereby reducing the tension–compression asymmetries and altering work-hardening behaviour. This work establishes the mechanistic connections between the microscale residual stresses and mechanical behaviour of AM stainless steel.


2011 ◽  
Vol 681 ◽  
pp. 103-108
Author(s):  
Anita Gaj ◽  
Lea le Joncour ◽  
Andrzej Baczmanski ◽  
Sebastian Wroński ◽  
Benoit Panicaud ◽  
...  

Time of flight neutron diffraction method was applied to measure elastic lattice strains in austenitic steel during "in situ" tensile test. Comparing experimental data with self-consistent model, the critical resolved shear stress and hardening parameters were determined for polycrystalline grains. The result allowed us to determine the main component of the stress localization tensor, relating the rate of grain stress with the applied macrostress rate. The evolution of concentration tensor in function of the applied macrostress was analyzed. Finally, the load transfer between grains during yielding of the sample was studied.


1980 ◽  
Vol 20 (06) ◽  
pp. 533-554 ◽  
Author(s):  
Keith H. Coats

Abstract This paper describes a numerical model forsimulating wet or dry, forward or reverse combustionin one, two, or three dimensions. The formulation isconsiderably more general than any reported to date.The model allows any number and identities ofcomponents. Any component may be distributed inany or all of the four phases (water, oil, gas, andsolid or coke.The formulation allows any number of chemicalreactions. Any reaction may have any number ofreactants, products, and stoichiometry, identifiedthrough input data. The energy balance accounts forheat loss and conduction, conversion, and radiationwithin the reservoir.The model uses no assumptions regarding degreeof oxygen consumption. The oxygen concentration iscalculated throughout the reservoir in accordancewith the calculated fluid flow pattern and reactionkinetics. The model, therefore, simulates the effectsof oxygen bypassing caused by kinetic-limitedcombustion or conformance factors.We believe the implicit model formulation resultsin maximum efficiency (lowest computing cost), andrequired computing times are reported in the paper.The paper includes comparisons of model resultswith reported laboratory adiabatic-tube test results.In addition, the paper includes example field-scalecases, with a sensitivity study showing effects on oilrecovery of uncertainties in rock/fluid properties. Introduction Recent papers by Ali, Crookston et al., andYoungren provide a comprehensive review of earlierwork in numerical modeling of the in-situcombustion process.The trend in this modeling has been toward morerigorous treatment of the fluid flow and interphasemass transfer; inclusion of more components, morecomprehensive reaction kinetics, and stoichiometry;and more implicit treatment of the finite differencemodel equations.The purpose of this work was to extend thegenerality of previous models while preserving orreducing the associated computing-time requirement.The most comprehensive or sophisticated combustionmodels described to date appear to be thoseof Crookston et al. and Youngren. Therefore, wecompare our model formulation and results here withthose models.A common objective of different investigators'efforts in modeling in-situ combustion is developmentof more efficient formulations and methods ofsolution. This is especially important in thecombustion case because of the large number ofcomponents and equations involved. For a given numberof components and reactions, computing time pergrid block per time step will increase rapidly as theformulation is rendered more implicit. However, increasing implicitness tends to allow larger timesteps, which in turn reduces overall computingexpense. To pursue the above objective, then, authorsshould present as completely as possible the details oftheir formulations and the associatedcomputing-time requirements.The thermal model described here simulateswet or dry, forward or reverse combustion in one, two, or three dimensions. The formulation allowsany number and identities of components and anynumber of chemical reactions, with reactants, products, and stoichiometry specified through input products, and stoichiometry specified through input data. SPEJ P. 533


2017 ◽  
Vol 17 (2) ◽  
pp. 279-284 ◽  
Author(s):  
Yuxiang Zhang ◽  
Eric Larose ◽  
Ludovic Moreau ◽  
Grégoire d’Ozouville

Locadiff, an innovative imaging technique based on diffuse waves, has recently been developed in order to image mechanical changes in heterogeneous, geological, or man-made materials. This manuscript reports the on-site application of Locadiff to locate several pre-existing cracks on an aeronautical wind tunnel made of pre-stressed concrete. Using 32 transducers working at ultrasonic frequencies (80–220 kHz) where multiple scattering occurs, we monitor during 15 min an area of 2.5 m×2.5 m of a 35-cm-thick wall. With the wind tunnel in its routine operation, structural changes around the cracks are detected, thanks to their closing or opening due to slight pressure changes. By mapping the density of such microstructure changes in the bulk of the material, locating three pre-existing cracks is properly performed in three dimensions.


2017 ◽  
Vol 905 ◽  
pp. 74-80
Author(s):  
David Gloaguen ◽  
Baptiste Girault ◽  
Jamal Fajoui ◽  
Vincent Klosek ◽  
Marie José Moya

A theoretical and experimental study was carry out to investigate deformation mechanisms in a textured titanium alloy. In situ neutron diffraction measurements were performed to analyze different {hk.l} family planes ({10.0}, {10.1}, {11.0} and {00.2}) and determine the corresponding internal strain pole figures. This method was applied to a pure titanium (a-Ti) submitted to a uniaxial tensile load up to 2 %. The experimental data was then used to validate the EPSC model in order to predict the distribution of lattice strains determined by neutron diffraction for various diffraction vector directions. This comparison reveals that the model results were in good agreement with the experimental data and the simulations reproduced the lattice strain development observed on the strain pole figures determined by neutron diffraction.


Sign in / Sign up

Export Citation Format

Share Document