Influence of Polyfluo-Wax on the Friction and Wear Behavior of Polyimide/Epoxy Resin–Molybdenum Disulfide Bonded Solid Lubricant Coating

2016 ◽  
Vol 59 (5) ◽  
pp. 889-895 ◽  
Author(s):  
Hongqi Wan ◽  
Yinping Ye ◽  
Lei Chen ◽  
Jianmin Chen ◽  
Huidi Zhou
Author(s):  
Jianliang Li ◽  
Dangsheng Xiong ◽  
Yongkun Qin ◽  
Rajnesh Tyagi

This chapter illustrates the effect of the addition of solid lubricants on the high temperature friction and wear behavior of Ni-based composites. Ni-based composites containing solid lubricant particles both in nano and micrometer range have been fabricated through powder metallurgy route. In order to explore the possible synergetic action of a combination of low and high temperature solid lubricant, nano or micro powders of two or more solid lubricants were added in the composites. This chapter introduces the fabrication of the Ni-based self-lubricating composites containing graphite and/or MoS2, Ag and/or rare earth, Ag and/or hBN as solid lubricants and their friction and wear behavior at room and elevated temperatures. The chapter also includes information on some lubricating composite coatings such as electro-deposited nickel-base coating containing graphite, MoS2, or BN and graphene and their tribological characteristics.


2012 ◽  
Vol 258 (17) ◽  
pp. 6384-6390 ◽  
Author(s):  
Yingke Kang ◽  
Xinhua Chen ◽  
Shiyong Song ◽  
Laigui Yu ◽  
Pingyu Zhang

Author(s):  
J. S. Harris ◽  
L.K. Ives ◽  
M. B. Peterson

Recent investigations have shown that SbSbS4 is a promising solid lubricant. It exhibits outstanding extreme pressure (EP) performance, and good antiwear behavior under laboratory test conditions. An investigation was undertaken to identify the mechanism by which SbSbS4 functioned when used as a lubricant in the dry powder form and as an additive to oils and greases. Friction and wear behavior of SbSbS^ was investigated using several different wear tests carried out in air at temperatures ranging from 20°C to 500°C.


2020 ◽  
Vol 63 (2) ◽  
pp. 56-60
Author(s):  
Toshiyuki MARUYAMA ◽  
Tomoaki TAKAHASHI ◽  
Masahiro TOSA

2010 ◽  
Vol 139-141 ◽  
pp. 414-417 ◽  
Author(s):  
Xiao Ming Jia ◽  
Jin Rong Chai

9Cr2Mo steel is widely used as measuring and cutting tool steel. The friction and wear behavior of 9Cr2Mo steel was investigated under dry friction and solid lubricant by wear tester. The experiment results show that the friction coefficient of 9Cr2Mo steel is 0.34~0.58 under dry friction and 0.035~0.06 under solid lubricant. With the increase of load , the friction coefficient decreases and the wearing capacity increases under two kinds of conditions. The wearing capacity of 9Cr2Mo steel under solid lubricant is great lower than it under dry friction. The friction process is smooth under solid lubricant. It indicated that the solid lubricant took effect in antifriction and antiwear of 9Cr2Mo steel.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Mürsel Ekrem ◽  
Hayrettin Düzcükoğlu ◽  
Muhammet Ali Şenyurt ◽  
Ömer Sinan Şahin ◽  
Ahmet Avcı

In this study, the effects of addition of boron nitride nanoplatelets (BNNPs) upon friction and wear behavior of epoxy resin have been investigated by using pin-on-disk test. It has been reported in the literature that certain amounts of BNNP addition can be useful for enhancement of mechanical properties. Therefore, it is very important to obtain the effect of such addition upon friction and wear performance of epoxy resin. BNNPs have been incorporated at 0.3–0.5–0.7–1 wt %. It is shown that BNNP addition results in decrease in friction coefficient and wear. It is also shown that the best results are obtained with 0.5% nanoplatelet addition. It is also observed that heat conduction of epoxy resin is enhanced by the nanoplatelet addition.


2011 ◽  
Vol 304 ◽  
pp. 6-11 ◽  
Author(s):  
Xiao Qian Qi ◽  
Xu Ping Zhang

Al-matrix self-lubricating which added MoS2 as solid lubricant was prepared by casting under variation in content of Si、Fe、Mn、MoS2、Cr3C2. Friction and wear behavior were investigated on MPX-2000 friction and abrasion machine. The microscopic structure and phases were analyzed by metallographic microscopic and XRD. The results show that the main factor influencing friction coefficient is Si, it can reduce the wear rate. Addition of MoS2 can reduce friction coefficient, Fe is used to improve the mechanical properties. Cr3C2 enhances the wear resistance.


Sign in / Sign up

Export Citation Format

Share Document