Friction and Wear Performance of Epoxy Resin Reinforced With Boron Nitride Nanoplatelets

2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Mürsel Ekrem ◽  
Hayrettin Düzcükoğlu ◽  
Muhammet Ali Şenyurt ◽  
Ömer Sinan Şahin ◽  
Ahmet Avcı

In this study, the effects of addition of boron nitride nanoplatelets (BNNPs) upon friction and wear behavior of epoxy resin have been investigated by using pin-on-disk test. It has been reported in the literature that certain amounts of BNNP addition can be useful for enhancement of mechanical properties. Therefore, it is very important to obtain the effect of such addition upon friction and wear performance of epoxy resin. BNNPs have been incorporated at 0.3–0.5–0.7–1 wt %. It is shown that BNNP addition results in decrease in friction coefficient and wear. It is also shown that the best results are obtained with 0.5% nanoplatelet addition. It is also observed that heat conduction of epoxy resin is enhanced by the nanoplatelet addition.

2010 ◽  
Vol 431-432 ◽  
pp. 385-388 ◽  
Author(s):  
Jian Hua Zhang ◽  
Pei Qi Ge ◽  
Lei Zhang ◽  
Yang Yu ◽  
Hui Li

The grind-hardening technology utilizes the grinding heat to harden the surface of the workpiece. The friction and wear performance of the grind-hardened layer is one of the important parameters. In this paper, the friction and wear performance of the grind-hardened layer was studied by the friction and wear experiment. The wear rate and the friction coefficient of the grind-hardened steel were studied by comparing with conventional hardened steel and non-hardened steel. The surface worn morphology and the collected wear debris of the grind-hardened steel were observed during the experiment. The wear mechanism of the grind-hardened steel was analyzed under different friction conditions.


2012 ◽  
Vol 258 (17) ◽  
pp. 6384-6390 ◽  
Author(s):  
Yingke Kang ◽  
Xinhua Chen ◽  
Shiyong Song ◽  
Laigui Yu ◽  
Pingyu Zhang

1983 ◽  
Vol 27 ◽  
Author(s):  
K. Kumar ◽  
H. Newborn ◽  
R. Kant

ABSTRACTPin-on-disk tests were performed for comparative friction and wear behavior on flat and graded profile boron implanted beryllium samples. Peak, intended boron concentrations of 10, 20, 30 and 40 atom percent were investigated. Auger Electron Spectroscopy was used to determine the boron concentration as a function of depth. Preliminary work was performed to study the effects of (1) a low temperature (450°C, 1–1/2 hours) heat treatment of the implanted specimens and (2) a change in the pin material. All of the boron implanted beryllium samples showed significant improvement versus unimplanted beryllium and an anodized beryllium surface. Graded samples showed comparable friction coefficients but inferior wear resistance with respect to the flat profile samples.


1995 ◽  
Vol 117 (4) ◽  
pp. 737-741 ◽  
Author(s):  
Y. Imada ◽  
K. Nakajima

Variation in friction and wear properties with relative humidity was obtained with an Sn pin sample on a Cu disk at a constant speed (0.4 m/s), load (6.4 N), and sliding distance (5 km), using a pin-on-disk apparatus. The influence of atmosphere on the tribological properties was investigated, including moisture ranging from 4% to 95 percent relative humidity (RH). It was found that the wear loss of the pin sample is very large at low humidity of around 5 percent RH, but it decreases and reaches saturation at about 50 percent RH. Factors characterizing the friction and wear at 50 percent RH were examined along with surface analysis of the disk. The results showed that the extensive transfer of Sn from pin to disk occurs during sliding and that the friction and wear behavior is determined by the friction and wear of an Sn sliding on Sn. An examination was carried out with an Sn pin sample on a stainless steel disk in comparison with an Sn-Cu couple. It was concluded that the friction and wear behavior is determined by the properties of the film transferred to the disk surface.


2011 ◽  
Vol 304 ◽  
pp. 6-11 ◽  
Author(s):  
Xiao Qian Qi ◽  
Xu Ping Zhang

Al-matrix self-lubricating which added MoS2 as solid lubricant was prepared by casting under variation in content of Si、Fe、Mn、MoS2、Cr3C2. Friction and wear behavior were investigated on MPX-2000 friction and abrasion machine. The microscopic structure and phases were analyzed by metallographic microscopic and XRD. The results show that the main factor influencing friction coefficient is Si, it can reduce the wear rate. Addition of MoS2 can reduce friction coefficient, Fe is used to improve the mechanical properties. Cr3C2 enhances the wear resistance.


2019 ◽  
Vol 9 (22) ◽  
pp. 4896 ◽  
Author(s):  
María T. Hernández-Sierra ◽  
Micael G. Bravo-Sánchez ◽  
José E. Báez ◽  
Luis D. Aguilera-Camacho ◽  
J. Santos García-Miranda ◽  
...  

Although much has been learned and investigated about environmentally friendly lubricants in recent years, several issues remain critical to their use in specific applications. A key point that could be limiting their utilization is that the effect of green lubricants on the tribological and mechanical properties of the elements has not been thoroughly studied since such attributes determine their performance in industrial applications. For this reason, in this research, the effect of green lubrication on the tribological and hardness properties of AISI 4140 steel was studied. The performance of three bio-based lubricants was studied and compared to that of five of the most representative lubricants. First, the lubricants were chemically and physically characterized. Then, the effect of each lubricant on the friction and wear behavior of the system was analyzed by kinetic friction coefficient, wear rate calculations, and microhardness measurements. In general, the bio-based lubricants exhibited the lowest values of friction and wear. Further the mechanical properties of the systems lubricated by these lubricants were not affected or were affected to a lesser degree.


2017 ◽  
Vol 739 ◽  
pp. 211-219
Author(s):  
Viktor Krasmik ◽  
Josef Schlattmann

Using an adapted ball-on-pyramid test setup, the friction and wear characteristics of some exemplary multi-material configurations (metal/polymer-metal) are studied. The results reveal that a manipulation of the friction and wear performance by combining certain sample materials is possible.


Sign in / Sign up

Export Citation Format

Share Document