Numerical Study of Thermal and Hydraulic Performance of Compound Heat Sink

2009 ◽  
Vol 55 (5) ◽  
pp. 432-447 ◽  
Author(s):  
Yue-Tzu Yang ◽  
Huan-Sen Peng
2019 ◽  
Vol 7 (1) ◽  
pp. 43-53
Author(s):  
Abbas Jassem Jubear ◽  
Ali Hameed Abd

The heat sink with vertically rectangular interrupted fins was investigated numerically in a natural convection field, with steady-state heat transfer. A numerical study has been conducted using ANSYS Fluent software (R16.1) in order to develop a 3-D numerical model.  The dimensions of the fins are (305 mm length, 100 mm width, 17 mm height, and 9.5 mm space between fins. The number of fins used on the surface is eight. In this study, the heat input was used as follows: 20, 40, 60, 80, 100, and 120 watts. This study focused on interrupted rectangular fins with a different arrangement and angle of the fins. Results show that the addition of interruption in fins in various arrangements will improve the thermal performance of the heat sink, and through the results, a better interruption rate as an equation can be obtained.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4417
Author(s):  
Tingting Xu ◽  
Hongxia Zhao ◽  
Miao Wang ◽  
Jianhui Qi

Printed circuit heat exchangers (PCHEs) have the characteristics of high temperature and high pressure resistance, as well as compact structure, so they are widely used in the supercritical carbon dioxide (S-CO2) Brayton cycle. In order to fully study the heat transfer process of the Z-type PCHE, a numerical model of traditional Z-type PCHE was established and the accuracy of the model was verified. On this basis, a new type of spiral PCHE (S-ZPCHE) is proposed in this paper. The segmental design method was used to compare the pressure changes under 5 different spiral angles, and it was found that increasing the spiral angle θ of the spiral structure will reduce the pressure drop of the fluid. The effects of different spiral angles on the thermal-hydraulic performance of S-ZPCHE were compared. The results show that the pressure loss of fluid is greatly reduced, while the heat transfer performance is slightly reduced, and it was concluded that the spiral angle of 20° is optimal. The local fluid flow states of the original structure and the optimal structure were compared to analyze the reason for the pressure drop reduction effect of the optimal structure. Finally, the performance of the optimal structure was analyzed under variable working conditions. The results show that the effect of reducing pressure loss of the new S-ZPCHE is more obvious in the low Reynolds number region.


Author(s):  
Chun K. Kwok ◽  
Matthew M. Asada ◽  
Jonathan R. Mita ◽  
Weilin Qu

This paper presents an experimental study of single-phase heat transfer characteristics of binary methanol-water mixtures in a micro-channel heat sink containing an array of 22 microchannels with 240μm × 630μm cross-section. Pure water, pure methanol, and five methanol-water mixtures with methanol molar fraction of 16%, 36%, 50%, 63% and 82% were tested. Key parametric trends were identified and discussed. The experimental study was complemented by a three-dimensional numerical simulation. Numerical predictions and experimental data are in good agreement with a mean absolute error (MAE) of 0.87%.


1993 ◽  
Vol 115 (3) ◽  
pp. 284-291 ◽  
Author(s):  
S. H. Bhavnani ◽  
C.-P. Tsai ◽  
R. C. Jaeger ◽  
D. L. Eison

Liquid immersion cooling is rapidly becoming the mechanism of choice for the newest generation of supercomputers. Miniaturization at both the chip and module level places a severe constraint on the size of the heat sink employed to dissipate the high heat fluxes generated. A study was conducted to develop a surface that could augment boiling heat transfer from silicon surfaces under these constraints. The surface created consists of reversed pyramidal features etched directly on to the silicon surface. Experiments were conducted in a saturated pool of refrigerant-113 at atmospheric pressure. The inexpensive crystallographic etching techniques used to create the enhanced features are described in the paper. The main characteristics of interest in the present study were the incipient boiling superheat and the magnitude of the temperature overshoot at boiling incipience. Results were obtained for test sections with various cavity densities, and compared with data for the smooth untreated surface. It was found that incipient boiling superheat was reduced from a range of 27.0–53.0° C for the untreated silicon surface, to a range of 2.5–15.0° C for the enhanced surfaces. The overshoot also decreased considerably; from about 12.0–18.0° C for two classes of untreated surfaces, to a range of 1.5–5.3° C for the enhanced surfaces. The values of the incipient boiling superheat, and those of the overshoot decreased with a decrease in cavity mouth size. Two ratios of heat source surface area to the area of the enhanced surface were studied. The overshoot values obtained for these surfaces were compared with those observed for some commonly used enhanced surfaces. An elementary numerical study was conducted to estimate the magnitude of heat spreading.


Author(s):  
Ali Kosar ◽  
Chih-Jung Kuo ◽  
Yoav Peles

An experimental study on thermal-hydraulic performance of de-ionized water over a bank of shrouded NACA 66-021 hydrofoil micro pin fins with wetted perimeter of 1030-μm and chord thickness of 100 μm has been performed. Average heat transfer coefficients have been obtained over effective heat fluxes ranging from 4.0 to 308 W/cm2 and mass velocities from 134 to 6600 kg/m2s. The experimental data is reduced to the Nusselt numbers, Reynolds numbers, total thermal resistances, and friction factors in order to determine the thermal-hydraulic performance of the heat sink. It has been found that prodigious hydrodynamic improvement can be obtained with the hydrofoil-based micro pin fin heat sink compared to the circular pin fin device. Fluid flow over pin fin heat sinks comprised from hydrofoils yielded radically lower thermal resistances than circular pin fins for a similar pressure drop.


Author(s):  
D. Sahray ◽  
H. Shmueli ◽  
N. Segal ◽  
G. Ziskind ◽  
R. Letan

In the present work, horizontal-base pin fin heat sinks exposed to free convection in air are studied. They are made of aluminum, and there is no contact resistance between the base and the fins. For the same base dimensions the fin height and pitch vary. The fins have a constant square cross-section. The edges of the sink are blocked: the surrounding insulation is flush with the fin tips. The effect of fin height and pitch on the performance of the sink is studied experimentally and numerically. In the experiments, the heat sinks are heated using foil electrical heaters. The heat input is set, and temperatures of the base and fins are measured. In the corresponding numerical study, the sinks and their environment are modeled using the Fluent 6 software. The results show that heat transfer enhancement due to the fins is not monotonic. The differences between sparsely and densely populated sinks are analyzed for various fin heights. Also assessed are effects of the blocked edges as compared to the previously studied cases where the sink edges were exposed to the surroundings.


Author(s):  
Suliman Mohamed Mohamed Ali ◽  
Waleed Fekry Faris ◽  
Ahmed Faris Ismail

Sign in / Sign up

Export Citation Format

Share Document