Dietary fat and gut microbiota: mechanisms involved in obesity control

2018 ◽  
Vol 59 (19) ◽  
pp. 3045-3053 ◽  
Author(s):  
Olívia Gonçalves Leão Coelho ◽  
Flávia Galvão Cândido ◽  
Rita de Cássia Gonçalves Alfenas
2017 ◽  
Vol 69 (2) ◽  
pp. 125-143 ◽  
Author(s):  
Flávia Galvão Cândido ◽  
Flávia Xavier Valente ◽  
Łukasz Marcin Grześkowiak ◽  
Ana Paula Boroni Moreira ◽  
Daniela Mayumi Usuda Prado Rocha ◽  
...  

mBio ◽  
2015 ◽  
Vol 6 (5) ◽  
Author(s):  
Sandi Wong ◽  
W. Zac Stephens ◽  
Adam R. Burns ◽  
Keaton Stagaman ◽  
Lawrence A. David ◽  
...  

ABSTRACT Gut microbiota influence the development and physiology of their animal hosts, and these effects are determined in part by the composition of these microbial communities. Gut microbiota composition can be affected by introduction of microbes from the environment, changes in the gut habitat during development, and acute dietary alterations. However, little is known about the relationship between gut and environmental microbiotas or about how host development and dietary differences during development impact the assembly of gut microbiota. We sought to explore these relationships using zebrafish, an ideal model because they are constantly immersed in a defined environment and can be fed the same diet for their entire lives. We conducted a cross-sectional study in zebrafish raised on a high-fat, control, or low-fat diet and used bacterial 16S rRNA gene sequencing to survey microbial communities in the gut and external environment at different developmental ages. Gut and environmental microbiota compositions rapidly diverged following the initiation of feeding and became increasingly different as zebrafish grew under conditions of a constant diet. Different dietary fat levels were associated with distinct gut microbiota compositions at different ages. In addition to alterations in individual bacterial taxa, we identified putative assemblages of bacterial lineages that covaried in abundance as a function of age, diet, and location. These results reveal dynamic relationships between dietary fat levels and the microbial communities residing in the intestine and the surrounding environment during ontogenesis. IMPORTANCE The ability of gut microbiota to influence host health is determined in part by their composition. However, little is known about the relationship between gut and environmental microbiotas or about how ontogenetic differences in dietary fat impact gut microbiota composition. We addressed these gaps in knowledge using zebrafish, an ideal model organism because their environment can be thoroughly sampled and they can be fed the same diet for their entire lives. We found that microbial communities in the gut changed as zebrafish aged under conditions of a constant diet and became increasingly different from microbial communities in their surrounding environment. Further, we observed that the amount of fat in the diet had distinct age-specific effects on gut community assembly. These results reveal the complex relationships between microbial communities residing in the intestine and those in the surrounding environment and show that these relationships are shaped by dietary fat throughout the life of animal hosts.


2020 ◽  
Vol 158 (6) ◽  
pp. S-1219-S-1220
Author(s):  
Anthony Xu ◽  
Donna White ◽  
David Y. Graham ◽  
Hashem B. El-Serag ◽  
Joseph F. Petrosino ◽  
...  

2016 ◽  
Vol 5 (12) ◽  
pp. 1162-1174 ◽  
Author(s):  
Raphaela Kübeck ◽  
Catalina Bonet-Ripoll ◽  
Christina Hoffmann ◽  
Alesia Walker ◽  
Veronika Maria Müller ◽  
...  

2016 ◽  
Vol 310 (11) ◽  
pp. E886-E899 ◽  
Author(s):  
Pia Kiilerich ◽  
Lene Secher Myrmel ◽  
Even Fjære ◽  
Qin Hao ◽  
Floor Hugenholtz ◽  
...  

Female C57BL/6J mice were fed a regular low-fat diet or high-fat diets combined with either high or low protein-to-sucrose ratios during their entire lifespan to examine the long-term effects on obesity development, gut microbiota, and survival. Intake of a high-fat diet with a low protein/sucrose ratio precipitated obesity and reduced survival relative to mice fed a low-fat diet. By contrast, intake of a high-fat diet with a high protein/sucrose ratio attenuated lifelong weight gain and adipose tissue expansion, and survival was not significantly altered relative to low-fat-fed mice. Our findings support the notion that reduced survival in response to high-fat/high-sucrose feeding is linked to obesity development. Digital gene expression analyses, further validated by qPCR, demonstrated that the protein/sucrose ratio modulated global gene expression over time in liver and adipose tissue, affecting pathways related to metabolism and inflammation. Analysis of fecal bacterial DNA using the Mouse Intestinal Tract Chip revealed significant changes in the composition of the gut microbiota in relation to host age and dietary fat content, but not the protein/sucrose ratio. Accordingly, dietary fat rather than the protein/sucrose ratio or adiposity is a major driver shaping the gut microbiota, whereas the effect of a high-fat diet on survival is dependent on the protein/sucrose ratio.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thibault Allain ◽  
Elena Fekete ◽  
Olivia Sosnowski ◽  
Dimitri Desmonts de Lamache ◽  
Jean-Paul Motta ◽  
...  

AbstractExogenous factors that may influence the pathophysiology of Giardia infection remain incompletely understood. We have investigated the role of dietary fat in the pathogenesis of Giardia infection. Male 3 to 4-week-old C57BL/6 mice were fed either a low fat (LF) or a high fat (HF) diet for 12 days and challenged with G. duodenalis. In infected animals, the trophozoite burden was higher in HF + Giardia mice compared to the LF + Giardia group at day 7 post infection. Fatty acids exerted direct pro-growth effects on Giardia trophozoites. Analysis of disease parameters showed that HF + Giardia mice exhibited more mucosal infiltration by inflammatory cells, decreased villus/crypt ratios, goblet cell hyperplasia, mucus disruption, increased gut motility, and elevated fecal water content compared with LF + Giardia. HF diet-dependent exacerbation of Giardia-induced goblet cell hyperplasia was associated with elevated Atoh1 and Muc2 gene expression. Gut microbiota analysis revealed that the HF diet alone induces a taxonomic shift. HF + Giardia mice exhibited microbiota dysbiosis characterized by an increase of Firmicutes and a decrease of Bacteroidetes and significant changes in α- and β-diversity metrics. Taken together, the findings suggest that a HF diet exacerbates the outcome of Giardia infection. The data demonstrate that elevated dietary fat represents an important exogenous factor promoting the pathophysiology of giardiasis.


2019 ◽  
Author(s):  
Kathleen E. Morrison ◽  
Eldin Jašarević ◽  
Christopher D. Howard ◽  
Tracy L. Bale

AbstractBackgroundDietary effects on the gut microbiome has been shown to play a key role in the pathophysiology of behavioral dysregulation, inflammatory disorders, metabolic syndrome, and obesity. Often overlooked is that experimental diets vary significantly in the proportion and source of dietary fiber. Commonly, treatment comparisons are made between animals that are fed refined diets that lack soluble fiber and animals fed vivarium-provided chow diet that contain a rich source of soluble fiber. Despite the well-established role of soluble fiber on metabolism, immunity, and behavior via the gut microbiome, the extent to which measured outcomes may be driven by differences in dietary fiber is unclear. Further, the significant impact of sex and age in response to dietary challenge is likely important and should also be considered.ResultsWe compared the impact of transitioning young and aged male and female mice from a chow diet to a refined low soluble fiber diet on body weight and gut microbiota. Then, to determine the contribution of dietary fat, we examined the impact of transitioning a subset of animals from refined low fat to refined high fat diet. Serial tracking of body weights revealed that consumption of low fat or high fat refined diet increased body weight in young and aged adult male mice. Young adult females showed resistance to body weight gain, while high fat diet-fed aged females had significant body weight gain. Transition from a chow diet to low soluble fiber refined diet accounted for most of the variance in community structure and composition across all groups. This dietary transition was characterized by a loss of taxa within the phylum Bacteroidetes and a concurrent bloom of Clostridia and Proteobacteria in a sex- and age-specific manner. Most notably, no changes to gut microbiota community structure and composition were observed between mice consuming either low- or high-fat diet, suggesting that transition to the refined diet that lacks soluble fiber is the primary driver of gut microbiota alterations, with limited additional impact of dietary fat on gut microbiota.ConclusionCollectively, our results show that the choice of control diet has a significant impact on outcomes and interpretation related to body weight and gut microbiota. These data also have broad implications for rodent studies that draw comparisons between refined high fat diets and chow diets to examine dietary fat effects on metabolic, immune, behavioral, and neurobiological outcomes.


OCL ◽  
2020 ◽  
Vol 27 ◽  
pp. 70
Author(s):  
Philippe Gérard

The human intestine harbours a complex and diverse bacterial community called the gut microbiota. This microbiota, stable during the lifetime, is specific of each individual despite the existence of a phylogenetic core shared by the majority of adults. The influence of the gut microbiota on host’s physiology has been largely studied using germfree animals and studies using these animal models have revealed that the effects of lipids on host physiology are microbiota-dependent. Studies in mice have also shown that a high-fat diet rapidly and reproducibly alters the gut microbiome. In humans, dietary fat interventions did not lead to strong and consistent modifications of the microbiota composition. Nevertheless, an association between total fat intake and the reduction of the microbiota richness has been repeatedly found. Interestingly, different types of fat exert different or even opposite effects on the microbiota. Concurrently, the gut microbiota is able to convert the lipids entering the colon, including fatty acids or cholesterol, leading to the production of metabolites with potential health effects.


Sign in / Sign up

Export Citation Format

Share Document