LncRNA TDRG1 promotes the proliferation, migration, and invasion of cervical cancer cells by sponging miR-214-5p to target SOX4

2020 ◽  
Vol 40 (3) ◽  
pp. 281-293 ◽  
Author(s):  
Meijun Guo ◽  
Beibei Lin ◽  
Guoping Li ◽  
Jun Lin ◽  
Xiuxiu Jiang
2020 ◽  
Vol 19 ◽  
pp. 153303382093413 ◽  
Author(s):  
Huiling Zhang ◽  
Ruxin Chen ◽  
Jinyan Shao

Purpose: The current study was intended to research the functional role and regulatory mechanism of microRNA-96-5p in the progression of cervical cancer. Methods: MicroRNA-96-5p expression in cervical cancer tissues was assessed by quantitative real-time polymerase chain reaction. The association between microRNA-96-5p expression and clinicopathological features of patients with cervical cancer was analyzed. MTT, flow cytometry, wound healing, and transwell assay were performed to evaluate the viability, apoptosis, migration, and invasion of Hela and SiHa cells. Targetscan, dual-luciferase reporter gene assay, and RNA pull-down analysis were constructed to evaluate the target relationship between microRNA-96-5p and secreted frizzled-related protein 4. Results: MicroRNA-96-5p was overexpressed in cervical cancer tissues, and microRNA-96-5p expression was markedly associated with the clinical stage and lymph node metastasis of patients with cervical cancer. Overexpressed microRNA-96-5p facilitated the viability, migration, invasion, and inhibited the apoptosis of Hela and SiHa cells, whereas suppression of microRNA-96-5p exerted the opposite trend. Secreted frizzled-related protein 4 was proved to be a target of microRNA-96-5p. Silencing of secreted frizzled-related protein 4 eliminated the anti-tumor effect of microRNA-96-5p on cervical cancer cells. Conclusions: MicroRNA-96-5p facilitated the viability, migration, and invasion and inhibited the apoptosis of cervical cancer cells via negatively regulating secreted frizzled-related protein 4.


2022 ◽  
Vol 12 (4) ◽  
pp. 820-826
Author(s):  
Chengyong Wu ◽  
Weifeng Wei ◽  
Jing Li ◽  
Shenglin Peng

Epithelial-mesenchymal transition (EMT) is closely related to the migrating and invading behaviors of cells. Periostin is one of the essential components in the extracellular matrix and can induce EMT of cells and their sequential metastasis. But its underlying mechanism is unclear. The Hela and BMSC cell lines were assigned into Periostin-mimic group, Periostin-Inhibitor group and Periostin-NC group followed by analysis of cell migration and invasion, expression of E-Cadherin, Vimentin, β-Catenin, Snail, MMP-2, MMP-9, PTEN, and p-PTEN. Cells in Periostin-mimic group exhibited lowest migration, least number of invaded cells, as well as lowest levels of Vimentin, β-Catenin, Snail, MMP-2, MMP-9, p-PTEN, Akt, p-Akt, p-GSK-3β, p-PDK1 and p-cRcf, along with highest levels of E-cadherin and PTEN. Moreover, cells in Periostin-NC group had intermediate levels of these above indicators, while, the Periostin-Inhibitor group exhibited the highest migration rate, the most number of invaded cells, and the highest levels of these proteins (P < 0.05). In conclusion, BMSCs-derived Periostin can influence the EMT of cervical cancer cells possibly through restraining the activity of the PI3K/AKT signal transduction pathway, indicating that Periostin might be a target of chemotherapy in clinics for the treatment of cervical cancer.


2018 ◽  
Vol 45 (5) ◽  
pp. 2086-2094 ◽  
Author(s):  
Jing Dong ◽  
Qing Wang ◽  
Li Li ◽  
Zhang Xiao-jin

Background/Aims: Cervical cancer, which is one of the most aggressive cancers affecting females, has high rates of recurrence and mortality. Small nucleolar RNA host gene 12 (SNHG12) is known to promote the progression of several cancers; however, its exact effects and molecular mechanisms in cervical cancer remain unknown. Methods: Real-time quantitative PCR was used to determine the expression level of SNHG12 in cervical cancer tissues and cell lines. Loss-of-function assays were performed to examine the effect of SNHG12 on the proliferation, apoptosis, migration and invasion of cervical cancer cells in vitro and tumor growth in vivo. Luciferase experiments were employed to explore the interactions between SNHG12 and miR-424-5p. Results: SNHG12 was found to be abnormally elevated in human cervical cancer tissues compared with paired adjacent normal tissues. Moreover, high SNHG12 expression in tumor tissues was significantly correlated with vascular involvement, lymph node metastasis, advanced FIGO stage and poor prognosis. Furthermore, the knockdown of SNHG12 was found to inhibit proliferation, migration and invasion of cervical cancer cells in vitro, and silencing SNHG12 was shown to suppress tumor growth in a nude mouse model. Mechanistic studies showed that SNHG12 functioned as an endogenous sponge for miR-424-5p, thereby downregulating the expression of miR-424-5p in cervical cancer. Furthermore, the inhibition of miR-424-5p in SNHG12-depleted cells partially reversed the effects on cervical cancer cell apoptosis, adhesion and invasion. Conclusion: In summary, our findings suggest that the tumor-promoting role of SNHG12 is to function as a molecular sponge, which negatively regulates miR-424-5p. These findings may provide a potent therapeutic target for cervical cancer.


2019 ◽  
Vol Volume 12 ◽  
pp. 5823-5833 ◽  
Author(s):  
Jingxin Lu ◽  
Xia Li ◽  
Kai Tu ◽  
Yuelin Guan ◽  
Kwok-Pui Fung ◽  
...  

2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Ying Zhang ◽  
Bingmei Sun ◽  
Lianbin Zhao ◽  
Zhengling Liu ◽  
Zonglan Xu ◽  
...  

Abstract The purpose of the present study is to figure out the role of miRNA-148a (miR-148a) in growth, apoptosis, invasion, and migration of cervical cancer cells by binding to regulator of ribosome synthesis 1 (RRS1). Cervical cancer and adjacent normal tissues, as well as cervical cancer cell line Caski, HeLa, C-33A, and normal cervical epithelial cell line H8 were obtained to detect the expression of miR-148a and RRS1. Relationship between miR-148a and RRS1 expression with clinicopathological characteristics was assessed. The selected Caski and HeLa cells were then transfected with miR-148a mimics, miR-148a inhibitors or RRS1 siRNA to investigate the role of miR-148a and RRS1 on proliferation, apoptosis, colony formation, invasion, and migration abilities of cervical cancer cells. Bioinformatics information and dual luciferase reporter gene assay was for used to detect the targetting relationship between miR-148a and RRS1. Down-regulated miR-148a and up-regulated RRS1 were found in cervical cancer tissues and cells. Down-regulated miR-148a and up-regulated RRS1 are closely related with prognostic factors of cervical cancer. RRS1 was determined as a target gene of miR-148a and miR-148a inhibited RRS1 expression in cervical cancer cells. Up-regulation of miR-148a inhibited cell proliferation, migration, and invasion while promoting apoptosis in Caski and HeLa cells. Our study suggests that miR-148a down-regulates RRS1 expression, thereby inhibiting the proliferation, migration, and invasion while promoting cell apoptosis of cervical cancer cells.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jianbing Liu ◽  
Yunfeng Li ◽  
Xihua Chen ◽  
Xiangbo Xu ◽  
Haoqi Zhao ◽  
...  

Abstract Background Cervical cancer is the leading cause of cancer-related death in women worldwide. However, the mechanisms mediating the development and progression of cervical cancer are unclear. In this study, we aimed to elucidate the roles of microRNAs and a1-chimaerin (CHN1) protein in cervical cancer progression. Methods The expression of miR-205 and CHN1 protein was investigated by in situ hybridisation and immunohistochemistry. We predicted the target genes of miR-205 using software prediction and dual luciferase assays. The expression of mRNAs and proteins was tested by qRT-PCR and western blotting respectively. The ability of cell growth, migration and invasion was evaluated by CCK-8 and transwell. Cell apoptosis was analysed by flow cytometry analysis. Results We found that miR-205 and CHN1 were highly expressed in human cervical cancer tissue compared with paired normal cervical tissues. The CHN1 gene was shown to be targeted by miR-205 in HeLa cells. Interestingly, transfection with miR-205 mimic upregulated CHN1 mRNA and protein, while miR-205 inhibitor downregulated CHN1 in high-risk and human papilloma virus (HPV)-negative human cervical cancer cells in vitro,. These data suggested that miR-205 positively regulated the expression of CHN1. Furthermore, the miR-205 mimic promoted cell growth, apoptosis, migration, and invasion in high-risk and HPV-negative cervical cancer cells, while the miR-205 inhibitor blocked these biological processes. Knockdown of CHN1 obviously reduced the aggressive cellular behaviours induced by upregulation of miR-205, suggesting that miR-205 positively regulated CHN1 to mediate these cell behaviours during the development of cervical cancer. Furthermore, CHN1 was correlated with lymph node metastasis in clinical specimens. Conclusions Our findings showed that miR-205 positively regulated CHN1 to mediate cell growth, apoptosis, migration, and invasion during cervical cancer development, particularly for high-risk HPV-type cervical cancer. These findings suggested that dysregulation of miR-205 and subsequent abnormalities in CHN1 expression promoted the oncogenic potential of human cervical cancer.


Author(s):  
Junliang Guo ◽  
Tian Tang ◽  
Jinhong Li ◽  
Yihong Yang ◽  
Yi Quan ◽  
...  

The aim of current study was to explore the mechanism of miR-142-5p in cervical cancer through mediating the PIK3AP1/P13K/AKT axis. To this end, RT-qPCR and Western blot analysis results revealed that miR-142-5p was poorly expressed, whereas PIK3AP1 was highly expressed in cervical cancer tissues and cells. Furthermore, miR-142-5p was hypermethylated in cervical cancer, as reflected by MS-PCR and ChIP assessment of enrichment of DNMT1/DNMT3a/DNMT3b in the promoter region of miR-142-5p. A target binding relationship between miR-142-5p and PIK3AP1 was established, showing that miR-142-5p targeted and inhibited the expression of PIK3AP1. Loss- and gain- function assays were conducted to determine the roles of miR-142-5p and PIK3AP1 in cervical cancer cells. CCK-8, flow cytometry and Transwell assay results revealed that overexpression of miR-142-5p in cervical cancer cells downregulated PIK3AP1 and inhibited the P13K/AKT signaling pathway, leading to reduced proliferation, migration, and invasion capacity of cervical cancer cells, but enhanced apoptosis. Collectively, epigenetic regulation of miR-142-5p targeted PIK3AP1 to inactivate the P13K/AKT signaling pathway, thus suppressing development of cervical cancer, which presents new targets for the treatment of cervical cancer.


2020 ◽  
Vol Volume 12 ◽  
pp. 3759-3769
Author(s):  
Lijun Huang ◽  
Yihong Chen ◽  
Shuyu Lai ◽  
Hongmei Guan ◽  
Xiaolin Hu ◽  
...  

2020 ◽  
Vol 34 ◽  
pp. 205873842093089
Author(s):  
Meili Xi ◽  
Wenbin Tang

Cervical cancer is the fourth most common malignancy in women. The aim of this study was to investigate the functions of Ezrin in cervical cancer cells. Two cervical cancer cell lines, SiHa and CaSki, were cultured in vitro. Following the knockdown of Ezrin using siRNA, real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis were applied to analyze Ezrin expression at the messenger RNA (mRNA) and protein levels. Subsequently, wound healing assay, transwell assay, and sulforhodamine B (SRB) assay were used to detect the migration, invasion, and viability of cervical cancer cells, respectively. Results revealed that Ezrin siRNA can notably inhibit the migration and invasion of SiHa and CaSki cells ( P  < 0.05). However, knockdown of Ezrin shows no effects on the viability of SiHa and CaSki cells ( P  < 0.05). It is indicated that Ezrin plays a possible role in promoting the migration and invasion of cervical cancer cells and may be a therapeutic target to prevent metastasis of cervical cancer.


Sign in / Sign up

Export Citation Format

Share Document