Alkali-stable GH11 endo-β-1,4 xylanase (XynB) from Bacillus subtilis strain CAM 21: application in hydrolysis of agro-industrial wastes, fruit/vegetable peels and weeds

Author(s):  
P. Monica ◽  
Mukesh Kapoor
2020 ◽  
Vol 14 (3) ◽  
pp. 2063-2074
Author(s):  
Ramya Chouhan ◽  
Suresh Lapaka ◽  
Nagaraju Alpula ◽  
Srinivas Podeti

Microbial sources are regularly used as reliable biocatalysts sources which are often used in the process and production industry. Demands for such organisms with greater capacity of intended enzyme production are on the rise. Lipase is important enzyme used in the biotechnological process of hydrolysis of fats in almost all the relevant industries We have utilized the local oil-contaminated soil resources to search for efficacious bacterial strains that have excellent lipase activity. We were successful in identifying two such bacterial sources, namely, Bacillus subtilis strain RCPS3 and Bacillus fumarioli strain RCPS4, responsible for lipase production from oil effluent contaminated soil of Telangana. This is the first report of these two strains from this part of India that are involved in lipase production. The strains were isolated, optimized, and purified using standard microbiology protocols and were characterized at the molecular level using the biomarker 16s ribosomal RNA genes of the strains. The identified and isolated bacterial strains were confirmed as Bacillus subtilis strain RCPS3, and Bacillus fumarioli strain RCPS4 through molecular and computational characterization.


2016 ◽  
Vol 4 (4) ◽  
Author(s):  
Daniel R. Reuß ◽  
Andrea Thürmer ◽  
Rolf Daniel ◽  
Wim J. Quax ◽  
Jörg Stülke

Bacillus subtilis ∆6 is a genome-reduced strain that was cured from six prophages and AT-rich islands. This strain is of great interest for biotechnological applications. Here, we announce the full-genome sequence of this strain. Interestingly, the conjugative element ICE Bs 1 has most likely undergone self-excision in B. subtilis ∆6.


1979 ◽  
Vol 179 (2) ◽  
pp. 333-339 ◽  
Author(s):  
A Y Strongin ◽  
D I Gorodetsky ◽  
I A Kuznetsova ◽  
V V Yanonis ◽  
Z T Abramov ◽  
...  

Intracellular serine proteinase was isolated from sporulating cells of Bacillus subtilis Marburg 168 by gramicidin S-Sepharose 4B affinity chromatography. The enzymological characteristics, the amino acid composition and the 19 residues of the N-terminal sequence of the enzyme are reported. The isolated proteinase was closely related to, but not completely identical with, the intracellular serine proteinase of B. subtilis A-50. The divergence between these two intracellular enzymes was less than that between the corresponding extracellular serine proteinases (subtilisins) of types Carlsberg and BPN′!, produced by these bacterial strains. This may be connected with the more strict selection constraints imposed in intracellular enzymes during evolution.


2017 ◽  
Vol 12 (1) ◽  
pp. 255-263 ◽  
Author(s):  
Kanjana Thumanu ◽  
Darawadee Wongchalee ◽  
Mathukorn Sompong ◽  
Piyaporn Phansak ◽  
Toan Le Thanh ◽  
...  

2006 ◽  
Vol 188 (21) ◽  
pp. 7609-7616 ◽  
Author(s):  
Alicia Monroe ◽  
Peter Setlow

ABSTRACT The Bacillus subtilis spore coat protein GerQ is necessary for the proper localization of CwlJ, an enzyme important in the hydrolysis of the peptidoglycan cortex during spore germination. GerQ is cross-linked into high-molecular-mass complexes in the spore coat late in sporulation, and this cross-linking is largely due to a transglutaminase. This enzyme forms an ε-(γ-glutamyl) lysine isopeptide bond between a lysine donor from one protein and a glutamine acceptor from another protein. In the current work, we have identified the residues in GerQ that are essential for transglutaminase-mediated cross-linking. We show that GerQ is a lysine donor and that any one of three lysine residues near the amino terminus of the protein (K2, K4, or K5) is necessary to form cross-links with binding partners in the spore coat. This leads to the conclusion that all Tgl-dependent GerQ cross-linking takes place via these three lysine residues. However, while the presence of any of these three lysine residues is essential for GerQ cross-linking, they are not essential for the function of GerQ in CwlJ localization.


Sign in / Sign up

Export Citation Format

Share Document