Floating bioplato for purification of waste quarry waters from mineral nitrogen compounds in the Arctic

2016 ◽  
Vol 51 (10) ◽  
pp. 833-838 ◽  
Author(s):  
Galina A. Evdokimova ◽  
Lyubov A. Ivanova ◽  
Natalia P. Mozgova ◽  
Vladimir A. Myazin ◽  
Nadezhda V. Fokina
2015 ◽  
Vol 19 (9) ◽  
pp. 35 ◽  
Author(s):  
G.A. Yevdokimova ◽  
L.A. Ivanova ◽  
N.P. Mozgova ◽  
V.A. Myazin ◽  
N.V. Fokina

1932 ◽  
Vol 22 (4) ◽  
pp. 797-810 ◽  
Author(s):  
Jadwiga Ziemięcka

Summary and abstract1. The kneaded plate (plaque moulée) method of detecting deficiency in lime and available phosphate was applied to seventy-nine soil samples taken from the classical Rothamsted arable plots, and the Azotobacter population from some of these samples was estimated by counts on silica jelly.2. The silica jelly counts showed that Azotobacter cells were very much reduced in number, or even absent in soil receiving 86 lb. per acre or more of mineral nitrogen. It is suggested that this is due to competition with other organisms whose growth is stimulated by added nitrogen compounds.3. The kneaded-plate test correctly indicaṫed whether phosphate had been applied in soils receiving little or no nitrogen manures.4. In those soils receiving 86 lb. or more of mineral nitrogen, the kneaded-plate test usually showed little or no Azotobacter growth even in the presence of phosphate and calcium carbonate. This failure was probably due to the paucity of Azotobacter cells originally present in such soil samples. In some cases the test was modified by inoculating the sample with a culture of Azotobacter and it then gave correct indications as to phosphate content.


Author(s):  
Elisabeth Ramm ◽  
Chunyan Liu ◽  
Per Ambus ◽  
Klaus Butterbach-Bahl ◽  
Bin Hu ◽  
...  

Abstract The paradigm that permafrost-affected soils show restricted mineral nitrogen (N) cycling in favor of organic N compounds is based on the observation that net N mineralization rates in these cold climates are negligible. However, we find here that this perception is wrong. By synthesizing published data on N cycling in the plant-soil-microbe system of permafrost ecosystems we show that gross ammonification and nitrification rates in active layers were of similar magnitude and showed a similar dependence on soil organic carbon (SOC) and total nitrogen (TN) concentrations as observed in temperate and tropical systems. Moreover, high protein depolymerization rates and only marginal effects of C:N stoichiometry on gross N turnover provided little evidence for N limitation. Instead, the rather short period when soils are not frozen is the single main factor limiting N turnover. High gross rates of mineral N cycling are thus facilitated by released protection of organic matter in active layers with nitrification gaining particular importance in N-rich soils, such as organic soils without vegetation. Our finding that permafrost-affected soils show vigorous N cycling activity is confirmed by the rich functional microbial community which can be found both in active and permafrost layers. The high rates of N cycling and soil N availability are supported by biological N fixation, while atmospheric N deposition in the Arctic still is marginal except for fire-affected areas. In line with high soil mineral N production, recent plant physiological research indicates a higher importance of mineral plant N nutrition than previously thought. Our synthesis shows that mineral N production and turnover rates in active layers of permafrost-affected soils do not generally differ from those observed in temperate or tropical soils. We therefore suggest to adjust the permafrost N cycle paradigm, assigning a generally important role to mineral N cycling. This new paradigm suggests larger permafrost N climate feedbacks than assumed previously.


2019 ◽  
Vol 30 ◽  
pp. 3-12
Author(s):  
V. V. Volkohon ◽  
S. B. Dimova ◽  
К. І. Volkohon ◽  
V. P. Gorban ◽  
N. P. Shtanko ◽  
...  

Objective. Investigate the performance of the nitrogen fixation and process of N-N2O loss un-der the cultivation of potatoes and peas on the leached chornozem under various mineral agrarian backgrounds and the use of microbial preparations and to determine the ecological compromise normal rate of mineral nitrogen, under which the emission losses of nitrogen compounds will not exceed the intake of “biological” nitrogen in agrocenoses. Methods. Field experiment, gas chroma-tographic. Results. Studies of the activity of nitrogen fixation and N2O emission in situ in potato and pea agrocenoses using different rates of mineral fertilizers and microbial preparations, with subsequent calculations of the parameters of intake of the “biological” nitrogen and emission loss-es of the element indicate the possibility of determining the conditions (doses of mineral nitrogen) for which equality between profit and non-productive expenditure of the nitrogen balance is achieved. This amount of mineral nitrogen can be considered environmentally permissible, its ex-cess is undesirable due to a decrease in the intake of “biological” nitrogen and increased activity of the denitrification process. For potatoes grown on leached chornozem, environmentally permis-sible nitrogen fertilizer rate should be considered as 80 kg/ha, for peas — 60 kg/ha. The use of mi-crobial preparations in the cultivation of crops promotes an increase in the range of environmen-tally permissible normal rates of mineral nitrogen due to the formation of conditions under which the bacterization of plants require more nitrogen compounds to ensure a constructive metabolism, which additionally to increased nitrogen fixation activity is accompanied by an increase in the level of consumption of mineral nitrogen in the soil. At the same time, the activity of biological denitrifi-cation becomes reduced. Based on the obtained parameters, a model of optimization of nitrogen mineral fertilization of agricultural cultures was developed. Conclusion. It is advisable to deter-mine the ecologically permissible normal rates of mineral nitrogen fertilization of crops by the per-formance indices of the nitrogen fixation process and N-N2O losses. In this case, the emission losses of nitrogen compounds should not exceed the levels of intake of biologically bound nitrogen in ag-rocenoses.


2013 ◽  
Vol 64 (4) ◽  
pp. 130-134 ◽  
Author(s):  
Jerzy Jonczak

Abstract The aim of the study was to compare the content of carbon and nitrogen fractions in fresh and dried samples of peat. The samples were extracted in 0.25 mol KCl·dm.-3, 0.25 mol H2SO4·dm.-3 and 2.5 mol H2SO4·dm.-3. Based on the extractions and analysis of total organic carbon (TOC) and total nitrogen (TN) following fractions of carbon and nitrogen were isolated: nonhydrolyzable carbon (NHC) and nitrogen (NHN), hardly hydrolyzable carbon (HHC) and nitrogen (HHN), easy hydrolyzable carbon (EHC) and nitrogen (EHN), dissolved organic nitrogen (DON), and its ammonium (NH4.-N) and nitrate (NO3.-N) form. Large differences between fresh and dried samples were observed in the content of some analyzed fractions . especially NO3.-N, NH4.-N, DON and HHC. 1.6.3.5 times higher concentrations of NO3.-N were observed in dry samples in comparison with fresh. In dried samples were also observed higher concentrations of NH4.-N and DON. In general lower concentrations of EHN, NHN, HHC and higher of HHN and EHC were observed in dried samples in comparison to fresh. Higher content of mineral nitrogen, as well as DON and DOC in dried samples, is probably an effect of mineralization of carbon and nitrogen compounds during initial stage of drying. The obtained data suggest, that the content of NO3.-N, NH4.-N, DON and EHC analyzed in dried samples of peat is overestimated. Extractions of the fractions from organic samples should be done based on fresh samples, just after sampling


2021 ◽  
Vol 12 (3) ◽  
pp. 66-75
Author(s):  
V. I. Lopushniak ◽  
◽  
G. M. Hrytsuliak ◽  

The studies have shown that the introduction of sewage sludge and compost made on its basis, significantly affects the change in the agrochemical parameters of the sod-medium-podzolic soil, increasing the content of the alkaline hydrolysed nitrogen compounds by 2.2 – 13.4 mg/kg of the soil compared to with control and determining the size of its values at the level of 51.2 – 56.5 mg/kg of the soil in the upper (0 – 20 cm) and 27.9 – 31.6 mg/kg – in the lower (20 – 40 cm) soil layer. The content of the ammonium nitrogen compounds in the variants with the fertilizer application fluctuated in a small range of the values (16 – 21 mg/kg of soil) and increases under the influence of increasing fertilizer doses. Together with the change in the content of the nitrate nitrogen, this contributed to an increase in the content of the mineral nitrogen compounds in the soil in the range of 18.5 – 23.4 mg/kg of the soil in arable (0 – 20 cm) and 19.8 – 21.9 mg/kg of the soil – in subsoil (20 – 40 cm) layers, which by 1.7 – 2.2 mg/kg of the soil exceeded the control variant. The highest indicators of the mineral nitrogen compounds were recorded in the variant where the highest dose of the sewage sludge was applied – 40 t/ha and mineral fertilizers (N10P14K58). Despite the wide range of the nitrogen content values of the alkaline hydrolysed compounds and mineral nitrogen compounds, their ratio remained stable and was 2.3 – 2.6 in the upper and 1.3 – 1.5 in the lower (20 – 40 cm) soil layer, and also decreased with the increasing dose of the fertilizer. That is, this indicator did not change significantly depending on the fertilizer application rate. The content of the mobile phosphorus compounds in the variants with the use of the fertilizers fluctuated in the range of the values (77.5 – 98.5 mg/kg of the soil) and increased under the influence of the introduction of the sewage sludge and compost based on it, which is 14.6 – 35.6 mg/kg of the soil was dominated by the control indicators. The highest rates of the mobile phosphorus compounds were recorded in the variant where the sewage sludge were applied – 40 t/ha and N10P14K58. The introduction of the sewage sludge at a rate of 20 – 40 t/ha contributed to an increase in the content of the potassium metabolites at the level of 89.3 – 97.2 mg/kg of the soil in the upper (0 – 20 cm) and 83.1 – 93.4 mg/kg – in the lower (20 – 40 cm) layer, which exceeded the indicators of the control variant by more than 42.1 mg/kg of the soil. The content of the potassium metabolic compounds increased somewhat less with the introduction of the composts based on the sewage sludge and straw. The results of the correlation-regression analysis indicate that the phosphorus concentration coefficient in the soil largely depends on the content of its mobile compounds and is marked by the coefficient of the determination R2 = 0.70. The potassium concentration coefficient is closely (R2 = 0.91) correlated with the content of its metabolic compounds in the soil.


Author(s):  
Sławomir Szymczyk

Factors which shape the load of water ecosystems with mineral nitrogen runoffs in rural areasThe present study of factors which affect the load of water ecosystems with mineral nitrogen compounds (N-NH


2020 ◽  
Vol 84 ◽  
pp. 04001
Author(s):  
Anna Korotaeva

Open pit mining using explosives based on ammonium nitrate leads to wastewater pollution with nitrogen compounds. In case of insufficient wastewater treatment, pollutants enter surface-water bodies. Excessive concentration of nitrogen compounds in water leads to the development of the process of eutrophication, which adversely affects the vital activity of aquatic organisms and humans. At the moment, a common method of wastewater treatment from nitrogen compounds is a biological treatment method using devices such as aeration chambers, oxidation tanks and slim filters. An alternative option for biological treatment is the introduction of algae into wastewater. In the conditions of the Arctic, it is difficult to carry out biological treatment using algae due to low temperatures throughout the year. In this study, the feasibility of using the frost-resistant strain Chlorella kessleri VKPM A1-l1ARW for the effluents treatment from nitrogen compounds was tested. Model solutions with a known nitrates concentration were used. Experiments were carried out at two specified temperatures for comparison. The results showed that by the end of the 10-day experiment, the nitrates extraction efficiency at standard temperature (20 °C) was from 40.3% to 71.8%, at low temperature (3 °C) was from 30.4% to 73.6%.


Sign in / Sign up

Export Citation Format

Share Document