scholarly journals A review of the importance of mineral nitrogen cycling in the plant-soil-microbe system of permafrost-affected soils – changing the paradigm

Author(s):  
Elisabeth Ramm ◽  
Chunyan Liu ◽  
Per Ambus ◽  
Klaus Butterbach-Bahl ◽  
Bin Hu ◽  
...  

Abstract The paradigm that permafrost-affected soils show restricted mineral nitrogen (N) cycling in favor of organic N compounds is based on the observation that net N mineralization rates in these cold climates are negligible. However, we find here that this perception is wrong. By synthesizing published data on N cycling in the plant-soil-microbe system of permafrost ecosystems we show that gross ammonification and nitrification rates in active layers were of similar magnitude and showed a similar dependence on soil organic carbon (SOC) and total nitrogen (TN) concentrations as observed in temperate and tropical systems. Moreover, high protein depolymerization rates and only marginal effects of C:N stoichiometry on gross N turnover provided little evidence for N limitation. Instead, the rather short period when soils are not frozen is the single main factor limiting N turnover. High gross rates of mineral N cycling are thus facilitated by released protection of organic matter in active layers with nitrification gaining particular importance in N-rich soils, such as organic soils without vegetation. Our finding that permafrost-affected soils show vigorous N cycling activity is confirmed by the rich functional microbial community which can be found both in active and permafrost layers. The high rates of N cycling and soil N availability are supported by biological N fixation, while atmospheric N deposition in the Arctic still is marginal except for fire-affected areas. In line with high soil mineral N production, recent plant physiological research indicates a higher importance of mineral plant N nutrition than previously thought. Our synthesis shows that mineral N production and turnover rates in active layers of permafrost-affected soils do not generally differ from those observed in temperate or tropical soils. We therefore suggest to adjust the permafrost N cycle paradigm, assigning a generally important role to mineral N cycling. This new paradigm suggests larger permafrost N climate feedbacks than assumed previously.

2004 ◽  
Vol 84 (1) ◽  
pp. 43-48 ◽  
Author(s):  
Martin H. Chantigny ◽  
Denis A. Angers ◽  
Candido Pomar ◽  
Thierry Morvan

Isotopic labelling can help improve our knowledge of the fate of manure N in agroecosystems. Our objective was to investigate the labelling dynamics of excreta N by feeding a pig with a 15N-enriched diet (2.808 atom % 15N) and to establish the implications of using the labelled excreta for N cycling studies. Pig urine and feces were collected and pooled each day for 20 d following the start of 15N-feeding. Each of the 20 excreta samples were analyzed for pH, dry matter content, C and N contents, and 15N distribution between the mineral and organic N pools. Sub-samples of each excreta sample were incubated for 84 d, and the 15N abundance of N mineralized after 7, 21 and 84 d of incubation was determined. The 15N concentration in pig excreta increased sharply during the first 3 d of 15N-feeding and slowly thereafter. The 15N concentration in excreta decreased rapidly when an unlabelled feed was served after 12 d of 15N-feeding. On the first day and after 9 d of 15N-feeding, the mineral and the organic N pools of the collected excreta had similar 15N content. However, from day 2 to 9 of 15N-feeding, the 15N abundance of excreta mineral N was 0.1 to 0.3 atom % lower than in the organic N pool. During incubation of the excreta samples, the 15N content of the mineralized N was 0.1 to 0.4 atom % lower after 84 d than after 21 d of incubation, indicating a heterogeneous distribution of 15N between the rapidly and the slowly mineralizable N pools of pig excreta. Despite some heterogeneity, the measured differences in 15N enrichment among the various excreta N pools were generally less than 15% for the first 9 d of 15N-feeding, and less than 5% afterwards. The labelled excreta were thus considered appropriate for short-term studies on the fate of manure N in the soil-plant system, especially for excreta collected after 9 d of 15N-feeding. Key words: 15N labelling, animal feeding, swine manure, pig slurry


2011 ◽  
Vol 35 (4) ◽  
pp. 1141-1149 ◽  
Author(s):  
Sérgio Ricardo Silva ◽  
Ivo Ribeiro da Silva ◽  
Nairam Félix de Barros ◽  
Eduardo de Sá Mendonça

The use of machinery in agricultural and forest management activities frequently increases soil compaction, resulting in greater soil density and microporosity, which in turn reduces hydraulic conductivity and O2 and CO2 diffusion rates, among other negative effects. Thus, soil compaction has the potential to affect soil microbial activity and the processes involved in organic matter decomposition and nutrient cycling. This study was carried out under controlled conditions to evaluate the effect of soil compaction on microbial activity and carbon (C) and nitrogen (N) mineralization. Two Oxisols with different mineralogy were utilized: a clayey oxidic-gibbsitic Typic Acrustox and a clayey kaolinitic Xantic Haplustox (Latossolo Vermelho-Amarelo ácrico - LVA, and Latossolo Amarelo distrófico - LA, respectively, in the Brazil Soil Classification System). Eight treatments (compaction levels) were assessed for each soil type in a complete block design, with six repetitions. The experimental unit consisted of PVC rings (height 6 cm, internal diameter 4.55 cm, volume 97.6 cm³). The PVC rings were filled with enough soil mass to reach a final density of 1.05 and 1.10 kg dm-3, respectively, in the LVA and LA. Then the soil samples were wetted (0.20 kg kg-1 = 80 % of field capacity) and compacted by a hydraulic press at pressures of 0, 60, 120, 240, 360, 540, 720 and 900 kPa. After soil compression the new bulk density was calculated according to the new volume occupied by the soil. Subsequently each PVC ring was placed within a 1 L plastic pot which was then tightly closed. The soils were incubated under aerobic conditions for 35 days and the basal respiration rate (CO2-C production) was estimated in the last two weeks. After the incubation period, the following soil chemical and microbiological properties were detremined: soil microbial biomass C (C MIC), total soil organic C (TOC), total N, and mineral N (NH4+-N and NO3--N). After that, mineral N, organic N and the rate of net N mineralization was calculated. Soil compaction increased NH4+-N and net N mineralization in both, LVA and LA, and NO3--N in the LVA; diminished the rate of TOC loss in both soils and the concentration of NO3--N in the LA and CO2-C in the LVA. It also decreased the C MIC at higher compaction levels in the LA. Thus, soil compaction decreases the TOC turnover probably due to increased physical protection of soil organic matter and lower aerobic microbial activity. Therefore, it is possible to conclude that under controlled conditions, the oxidic-gibbsitic Oxisol (LVA) was more susceptible to the effects of high compaction than the kaolinitic (LA) as far as organic matter cycling is concerned; and compaction pressures above 540 kPa reduced the total and organic nitrogen in the kaolinitic soil (LA), which was attributed to gaseous N losses.


2006 ◽  
Vol 36 (1) ◽  
pp. 62-76 ◽  
Author(s):  
Michael B Walters ◽  
Cleo C Lajzerowicz ◽  
K David Coates

Observations of tree seedlings with chlorotic foliage and stunted growth near harvest gap – forest edges in interior cedar–hemlock forests inspired a study addressing the following questions: (1) Do seedling foliar chemistry, foliar nitrogen (N) versus growth relationships, and fertilizer responses suggest N-limited seedling growth? (2) Are patterns in soil characteristics consistent with N limitation, and can interrelationships among these characteristics infer causality? Our results suggest that seedling growth near gap–forest edges was colimited by N and light availability. Soil mineral N and dissolved organic N (DON) concentrations, in situ net N mineralization, and water generally increased from forest to gap, whereas N mineralization from a laboratory incubation and total N and carbon did not vary with gap–forest position. Interrelations among variables and path analysis suggest that soil water and total soil N positively affect DON concentration and N mineralization, and proximity to mature gap–forest edge trees negatively impacts mineral N concentration and water. Collectively, our results suggest that soil N levels which limit seedling growth near gap edges can be partially explained by the direct negative impacts of gap–forest edge trees on mineral N concentrations and their indirect impacts on N cycling via soil water, and not via effects on substrate chemistry.


Author(s):  
B.E. Ruz-Jerez ◽  
P.Roger Ball ◽  
R.E. White

Changes in soil mineral nitrogen(N) were monitored during regrowth of pasture between consecutive grazings in two contrasting grassland systems; Grass-clover (the norm in NZ) and a more intensive system, Grass+N400 (pure grass + 400 kg fertiliser N/ha/year). The experiment was carried out during autumn at DSIR Grasslands.Palmerston North. Net mineralisation of N under field conditions was estimate_d- i~n- an ancillary experiment, using soil samples from undisturbed soil cores contained in PVC tubes. The dynamics of mineral N in soil were dominated by a 'pulse' of ammonium, observable soon after grazing. Nitrification proceeded rapidly thereafter. Mineral N in soil then progressively declined, much of it going into organic combination presumably through uptake by plants. Since nitrate formation in the soil is minimised by maximising the residence time of N in plant (organic) form, differentmanagementoptions(varyinginfrequency and intensity of defoliation) may have important influences, not only on pasture utilisation and production, but also on the management of mineral N in the soil-plant-animal complex. Tubes embedded in soil and incubated in the field have provided some additional, useful perspectives. There was only limitedevidence for significant net mineralisation of organic N throughout the period of regrowth. Analyses of individual soil cores demonstrated a sharp contrast between the pasture at large and the 10 - 15% of total area influenced by urine from the previous grazing, in terms of mineral N content. 'Averaging' these by bulking numerous cores into a composite sample can provide an accurate quantitative estimate of mineral N, which can be related to herbage uptake of N over the whole area. But if losses of N (by leaching or volatilisation) are disproportionate to the concentration of mineral N in affected and unaffected volumes of soil, then bulking samples and averaging will not be the most appropriate way to estimate these losses. The results of this study point to the importance of the urine of grazing ruminants as a N substrate for pasture regrowth in the absence of fertiliser N. At the same time, urine patches provide the main avenue for Nescape to the wider environment from developed pastures. Keywords mineral N, N in pastures, N cycling by animals


HortScience ◽  
2000 ◽  
Vol 35 (2) ◽  
pp. 209-212 ◽  
Author(s):  
T.K. Hartz ◽  
J.P. Mitchell ◽  
C. Giannini

Nitrogen and carbon mineralization rates of 19 manure and compost samples were determined in 1996, with an additional 12 samples evaluated in 1997. These organic amendments were mixed with a soil: sand blend at 2% by dry weight and the amended blends were incubated at constant moisture for 12 (1996) or 24 weeks (1997) at 25 °C. Net N mineralization was measured at 4- (1996) or 8-week (1997) intervals, C mineralization at 4-week intervals in 1997. Pots of the amended blends were also seeded with fescue (Festuca arundinacea Shreb.) and watered, but not fertilized, for 17 (1996) or 18 weeks (1997); N phytoavailability was estimated from fescue biomass N and mineral N in pot leachate. An average of 16%, 7%, and 1% of organic N was mineralized in 12 weeks of incubation in 1996, and an average of 15%, 6%, and 2% in 24 weeks of incubation in 1997, in manure, manure compost, and plant residue compost, respectively. Overall, N recovery in the fescue assay averaged 11%, 6%, and 2% of total amendment N for manure, manure compost, and plant residue compost, respectively. Mineralization of manure C averaged 35% of initial C content in 24 weeks, while compost C mineralization averaged only 14%. Within 4 (compost) or 16 weeks (manure), the rate of mineralization of amendment C had declined to a level similar to that of the soil organic C.


Author(s):  
Betina Nørgaard Pedersen ◽  
Bent T. Christensen ◽  
Luca Bechini ◽  
Daniele Cavalli ◽  
Jørgen Eriksen ◽  
...  

Abstract The plant availability of manure nitrogen (N) is influenced by manure composition in the year of application whereas some studies indicate that the legacy effect in following years is independent of the composition. The plant availability of N in pig and cattle slurries with variable contents of particulate matter was determined in a 3-year field study. We separated cattle and a pig slurry into liquid and solid fractions by centrifugation. Slurry mixtures with varying proportions of solid and liquid fraction were applied to a loamy sand soil at similar NH4+-N rates in the first year. Yields and N offtake of spring barley and undersown perennial ryegrass were compared to plots receiving mineral N fertilizer. The first year N fertilizer replacement value (NFRV) of total N in slurry mixtures decreased with increasing proportion of solid fraction. The second and third season NFRV averaged 6.5% and 3.8% of total N, respectively, for cattle slurries, and 18% and 7.5% for pig slurries and was not related to the proportion of solid fraction. The estimated net N mineralization of residual organic N increased nearly linearly with growing degree days (GDD) with a rate of 0.0058%/GDD for cattle and 0.0116%/GDD for pig slurries at 2000–5000 GDD after application. In conclusion NFRV of slurry decreased with increasing proportion of solid fraction in the first year. In the second year, NFRV of pig slurry N was significantly higher than that of cattle slurry N and unaffected by proportion between solid and liquid fraction.


Author(s):  
Subin Kalu ◽  
Gboyega Nathaniel Oyekoya ◽  
Per Ambus ◽  
Priit Tammeorg ◽  
Asko Simojoki ◽  
...  

AbstractA 15N tracing pot experiment was conducted using two types of wood-based biochars: a regular biochar and a Kon-Tiki-produced nutrient-enriched biochar, at two application rates (1% and 5% (w/w)), in addition to a fertilizer only and a control treatment. Ryegrass was sown in pots, all of which except controls received 15N-labelled fertilizer as either 15NH4NO3 or NH415NO3. We quantified the effect of biochar application on soil N2O emissions, as well as the fate of fertilizer-derived ammonium (NH4+) and nitrate (NO3−) in terms of their leaching from the soil, uptake into plant biomass, and recovery in the soil. We found that application of biochars reduced soil mineral N leaching and N2O emissions. Similarly, the higher biochar application rate of 5% significantly increased aboveground ryegrass biomass yield. However, no differences in N2O emissions and ryegrass biomass yields were observed between regular and nutrient-enriched biochar treatments, although mineral N leaching tended to be lower in the nutrient-enriched biochar treatment than in the regular biochar treatment. The 15N analysis revealed that biochar application increased the plant uptake of added nitrate, but reduced the plant uptake of added ammonium compared to the fertilizer only treatment. Thus, the uptake of total N derived from added NH4NO3 fertilizer was not affected by the biochar addition, and cannot explain the increase in plant biomass in biochar treatments. Instead, the increased plant biomass at the higher biochar application rate was attributed to the enhanced uptake of N derived from soil. This suggests that the interactions between biochar and native soil organic N may be important determinants of the availability of soil N to plant growth.


1994 ◽  
Vol 74 (1) ◽  
pp. 99-107 ◽  
Author(s):  
D. C. Jans-Hammermeister ◽  
W. B. McGill ◽  
T. L. Jensen

The distribution and dynamics of 15N following green manuring of 15N-labelled 10% bloom and full bloom field pea (Pisum sativum ’Sirius’) were investigated in the soil mineral N, microbial N and non-microbial organic N (NMO-N) fractions and in a subsequent barley crop at two contrasting field sites in central Alberta: one on a Chernozemic (Dark Brown) soil near Provost and the other on a Luvisolic (Gray Luvisol) soil near Rimbey. Soils and plants were sampled four times during a 1-yr period. The 10% bloom and full bloom pea shoots were similar in dry matter production and N and C content. More N was, however, released from the younger pea residues directly following soil incorporation, which we attributed to a larger proportion of labile components. Barley yield, N content and 15N recovery in the grain were not influenced by legume bloom stage at incorporation, although significantly more 15N was recovered in the barley straw and roots of the full bloom treatment. Incorporation of full bloom legumes resulted in closer synchrony between the appearance of legume-derived mineral 15N and early N demand by the barley crop. The decay rate constants for the recalcitrant fraction of the legume residues were not significantly influenced by bloom stage or site over the time intervals of our observations and are, thus, consistent with the theory that decomposition of the recalcitrant fraction of plant residues can be described by a single exponential equation. Key words:15N, legume green manuring, Pisum sativum, decomposition


Soil Research ◽  
2001 ◽  
Vol 39 (3) ◽  
pp. 519 ◽  
Author(s):  
J. Sierra ◽  
S. Fontaine ◽  
L. Desfontaines

Laboratory incubations and a field experiment were carried out to determine the factors controlling N mineralization and nitrification, and to estimate the N losses (leaching and volatilization) in a sewage-sludge-amended Oxisol. Aerobically digested sludge was applied at a rate equivalent to 625 kg N/ha. The incubations were conducted as a factorial experiment of temperature (20˚C, 30˚C, and 40˚C) soil water (–30 kPa and –1500 kPa) sludge type [fresh (FS) water content 6230 g/kg; dry (DS) water content 50 g/kg]. The amount of nitrifiers was determined at the beginning and at the end of the experiment. The incubation lasted 24 weeks. The field study was conducted using bare microplots (4 m) and consisted of a factorial experiment of sludge type (FS and DS) sludge placement (subsurface, I+; surface, I–). Ammonia volatilization and the profile (0–0.90 m) of mineral N concentration were measured during 6 and 29 weeks after sludge application, respectively. After 24 weeks of incubation at 40˚C and –30 kPa, net N mineralization represented 52% (FS) and 71% (DS) of the applied N. The difference between sludges was due to an initial period of N immobilization in FS. Nitrification was more sensitive than N mineralization to changes in water potential and it was fully inhibited at –1500 kPa. The introduction of a large amount of nitrifiers with FS did not modify the rate of nitrification, which was principally limited by soil acidity (pH 4.9). Although N mineralization was greatest at 30˚C, nitrification increased continuously with temperature. Nitrogen mineralization from DS was well described by the double-exponential equation. For FS, the equation was modified to take into account an immobilization-remineralization period. Sludge placement significantly affected the soil NO-3/NH+4 ratio in the field: 16 for I+ and 1.5 for I–, after 11 weeks. In the I– treatment, nitrification of the released NH+4 was limited by soil moisture because of the dry soil mulch formed a few hours after rain. At the end of the field experiment, the estimated losses of N by leaching were 432 kg N/ha for I+ and 356 kg N/ha for I–. Volatilization was not detectable in the I+ microplots and it represented only 0.5% of the applied N in the I– microplots. The results showed that placement of sludge may be a valuable tool to decrease NO-3 leaching by placing the sludge under unfavourable conditions for nitrification.


2014 ◽  
Vol 11 (6) ◽  
pp. 9667-9695 ◽  
Author(s):  
C. M. White ◽  
A. R. Kemanian ◽  
J. P. Kaye

Abstract. Carbon (C) saturation theory suggests that soils have a~limited capacity to stabilize organic C and that this capacity may be regulated by intrinsic soil properties such as clay content and mineralogy. While C saturation theory has advanced our ability to predict soil C stabilization, we only have a weak understanding of how C saturation affects N cycling. In biogeochemical models, C and N cycling are tightly coupled, with C decomposition and respiration driving N mineralization. Thus, changing model structures from non-saturation to C saturation dynamics can change simulated N dynamics. Carbon saturation models proposed in the literature calculate a theoretical maximum C storage capacity of saturating pools based on intrinsic soil properties, such as clay content. The extent to which current C stocks fill the storage capacity of the pool is termed the C saturation ratio, and this ratio is used to regulate either the efficiency or the rate of C transfer from donor to receiving pools. In this study, we evaluated how the method of implementing C saturation and the number of pools in a model affected net N mineralization from decomposing plant residues. In models that use the C saturation ratio to regulate transfer efficiency, C saturation affected N mineralization, while in those in which the C saturation ratio regulates transfer rates, N mineralization was independent of C saturation. When C saturation ratio regulates transfer efficiency, as the saturation ratio increases, the threshold C : N ratio at which positive net N mineralization occurs also increases because more of the C in the residue is respired. In a single-pool model where C saturation ratio regulated the transfer efficiency, predictions of N mineralization from residue inputs were unrealistically high, missing the cycle of N immobilization and mineralization typically seen after the addition of high C : N inputs to soils. A more realistic simulation of N mineralization was achieved simply by adding a second pool to the model to represent short-term storage and turnover of C and N in microbial biomass. These findings increase our understanding of how to couple C saturation and N mineralization models, while offering new hypotheses about the relationship between C saturation and N mineralization that can be tested empirically.


Sign in / Sign up

Export Citation Format

Share Document