Prediction of maximum pressure of journal bearing using ANN with multiple input parameters

Author(s):  
Sunil Kumar ◽  
Vijay Kumar ◽  
Anoop Kumar Singh
Author(s):  
Biswajit Roy ◽  
Sudip Dey

The precise prediction of a rotor against instability is needed for avoiding the degradation or failure of the system’s performance due to the parametric variabilities of a bearing system. In general, the design of the journal bearing is framed based on the deterministic theoretical analysis. To map the precise prediction of hydrodynamic performance, it is needed to include the uncertain effect of input parameters on the output behavior of the journal bearing. This paper presents the uncertain hydrodynamic analysis of a two-axial-groove journal bearing including randomness in bearing oil viscosity and supply pressure. To simulate the uncertainty in the input parameters, the Monte Carlo simulation is carried out. A support vector machine is employed as a metamodel to increase the computational efficiency. Both individual and compound effects of uncertainties in the input parameters are studied to quantify their effect on the steady-state and dynamic characteristics of the bearing.


1994 ◽  
Vol 116 (3) ◽  
pp. 621-627 ◽  
Author(s):  
H. Desbordes ◽  
M. Fillon ◽  
C. Chan Hew Wai ◽  
J. Frene

A theoretical nonlinear analysis of tilting-pad journal bearings is presented for small and large unbalance loads under isothermal conditions. The radial displacements of internal pad surface due to pressure field are determined by a two-dimensional finite element method in order to define the actual film thickness. The influence of pad deformations on the journal orbit, on the minimum film thickness and on the maximum pressure is studied. The effects of pad displacements are to decrease the minimum film thickness and to increase the maximum pressure. The orbit amplitude is also increased by 20 percent for the large unbalance load compared to the one obtained for rigid pad.


1990 ◽  
Vol 112 (2) ◽  
pp. 224-229 ◽  
Author(s):  
G. Gupta ◽  
C. R. Hammond ◽  
A. Z. Szeri

The aim of this paper is to make available to the industrial designer results of the thermohydrodynamic theory of journal bearings, by providing a simplified, yet accurate model of journal bearing lubrication that can be implemented on a personal computer and be used in an interactive mode. The simplified THD theory we propose consists of two coupled ordinary differential equations for pressure and energy and an algebraic equation for viscosity, which are to be solved iteratively. Bearing load capacity, maximum bearing temperature, maximum pressure, coefficient of friction and lubricant flow rate calculated from this simplified theory compare well with results from a more sophisticated model. We also make comparisons with experimental data on full journal bearings, demonstrating substantial agreement between experiment and simplified theory.


2020 ◽  
Vol 37 (3−4) ◽  
Author(s):  
Prashant Govindrao Khakse ◽  
Vikas M. Phalle

The present work studies the analysis of a non recessed hole entry conical hybrid/hydrostatic journal bearing adjusted for constant flow valve (CFV) restriction. The paper provides effectiveness between the conical bearings with hole entry operating in hybrid and hydrostatic mode. The Reynolds formulae, for the flow of fluid through the mating surfaces of a conical journal and bearing, are numerically worked out in both the modes considering the finite element analysis (FEA) and the necessary boundary preconditions. Holes in double row are marked on conical bearing circumference to accommodate the CFV restrictors, the angular distance between two holes are 30o apart from the apex. Qualitative features of the conical journal bearing system with hole entry have been elaborated to analyze bearing performance for radial load variation Wr = 0.25-2. Numerical results obtained from the present study indicate that load carrying capacity of conical bearing, operating in hydrostatic mode, is enhanced by the maximum pressure, direct fluid film damping and direct film stiffness coefficients vis-a-vis corresponding hybrid mode.  


Author(s):  
Mihai B. Dobrica ◽  
Michel Fillon

In this paper, the influence of circumferential scratches on the thermohydrodynamic performance of a partial (lobe) journal bearing is studied. The bearing damage is characterized by four factors: the area of the scratched region, the density of the scratches within the affected area, the relative position of the scratched region and the relative depth of the wear defects. The bearing performance is characterized by minimum film thickness, average oil temperature, maximum pressure, friction torque etc., at imposed magnitude and direction of the load. A numerical hydrodynamic model with global thermal effects is used for studying the influence of the different wear related parameters on the bearing performance. The results permit to predict the overall performance loss due to the circumferential wear marks, for different wear profiles. The types of wear profiles that can lead to the bearing destruction (characterized by a critical minimum film thickness) are also investigated.


2001 ◽  
Vol 124 (2) ◽  
pp. 313-319 ◽  
Author(s):  
J. Bouyer ◽  
M. Fillon

The present study deals with the experimental determination of the performance of a 100 mm diameter plain journal bearing submitted to a misalignment torque. Hydrodynamic pressure and temperature fields in the mid-plane of the bearing, temperatures in two axial directions, oil flow rate, and minimum film thickness, were all measured for various operating conditions and misalignment torques. Tests were carried out for rotational speeds ranging from 1500 to 4000 rpm with a maximum static load of 9000 N and a misalignment torque varying from 0 to 70 N.m. The bearing performances were greatly affected by the misalignment. The maximum pressure in the mid-plane decreased by 20 percent for the largest misalignment torque while the minimum film thickness was reduced by 80 percent. The misalignment caused more significant changes in bearing performance when the rotational speed or load was low. The hydrodynamic effects were then relatively small and the bearing offered less resistance to the misalignment.


Author(s):  
Sanyam Sharma ◽  
Chimata M Krishna

The plain circular journal bearings are not found to be stable by researchers when used in high speed rotating machineries. Hence, extensive research in the study of stability characteristics of non-circular bearings or lobed bearings assumed importance, of late. Present article deals with the stability analysis of non-circular offset bearing by taking selected set of input and output parameters. Modified Reynolds equation for micropolar lubricated rigid journal bearing system is solved using finite element method. Two kinds of input parameters namely, offset factors (0.2, 0.4) and aspect ratios (1.6, 2.0) have been selected for the study. The important output characteristics such as load, critical mass, whirl frequency ratio, and threshold speed are computed and plotted for various set of values of input parameters. The results obtained indicate that micropolar lubricated circular offset bearing is highly stable for higher offset factor and higher aspect ratio.


2004 ◽  
Vol 126 (4) ◽  
pp. 819-822 ◽  
Author(s):  
J. Bouyer ◽  
M. Fillon

The present work analyzes the influence of global and local thermal effects and also mechanical and thermal deformations on bearing performance. Local thermal effects are important in the case of a highly loaded bearing because these effects are concentrated within a small zone of the bearing. The thermoelastohydrodynamic study, including deformations due to pressure, leads to a significant decrease in maximum pressure and a slight decrease in maximum temperature. For accurate performance predictions of bearings operating under severe conditions, numerical simulations have to take into account local thermal effects and both mechanical and thermal deformations.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Yanfeng Han ◽  
Shangwu Xiong ◽  
Jiaxu Wang ◽  
Q. Jane Wang

Steady-state mixed hydrodynamic lubrication of rigid journal bearing is investigated by using a finite difference form of the Patir–Cheng average Reynolds equation under the Reynolds boundary condition. Two sets of discretization meshes, i.e., the rectangular and nonorthogonal herringbone meshes, are considered. A virtual-mesh approach is suggested to resolve the problem due to the singularities of pressure derivatives at the turning point of the herringbone mesh. The effectiveness of the new approach is examined by comparing the predicted load with that found in the literature for a smooth-surface case solved in the conventional rectangular mesh. The effects of the skewness angles of symmetric and asymmetric herringbone meshes on the predicted parameters, such as load, friction coefficient, attitude angle, and maximum pressure, are investigated for smooth, rough, and herringbone-grooved bearing surfaces. It is found that the new approach helps to improve the computational accuracy significantly, as demonstrated by comparing the results with and without the treatment of the pressure derivative discontinuity although the latter costs slightly less computational time.


2013 ◽  
Vol 315 ◽  
pp. 809-814 ◽  
Author(s):  
Mohamad Ali Ahmad ◽  
Salmiah Kasolang ◽  
Rob Dwyer-Joyce ◽  
Nik Rosli Abdullah

In hydrodynamic lubrication, the pressure condition of the fluid is critical to ensure good performance of the lubricated machine elements such as journal bearings. In the present study, an experimental work was conducted to determine the effect of oil supply pressure on pressure profile around the circumference of a journal bearing. A journal diameter of 100mm with a ½ length-to-diameter ratio was used. The oil supply pressure was set at three different values (0.3, 0.5, 0.7 Mpa) and the circumferential pressure results for 400, 600 and 800 RPM at different radial loads were obtained. It was observed that the maximum pressure values were affected by changes in oil supply pressure.


Sign in / Sign up

Export Citation Format

Share Document