Effects of antitranspirant and leaching on medium solution osmotic potential, leaf stomatal status, transpiration, abscisic acid content and plant growth in ’Early Girl’ tomato plants (Lycopersicon esculentum)

1998 ◽  
Vol 73 (4) ◽  
pp. 473-477 ◽  
Author(s):  
Sanliang Gu ◽  
Leslie H. Fuchigami ◽  
Lailiang Cheng ◽  
Sung H. Guak ◽  
Charles Shin
2022 ◽  
Vol 14 (2) ◽  
pp. 723
Author(s):  
Abdel Wahab M. Mahmoud ◽  
Mahmoud M. Samy ◽  
Hoda Sany ◽  
Rasha R. Eid ◽  
Hassan M. Rashad ◽  
...  

Salinity is one of the main environmental stresses, and it affects potato growth and productivity in arid and semiarid regions by disturbing physiological process, such as the photosynthesis rate, the absorption of essential nutrients and water, plant hormonal functions, and vital metabolic pathways. Few studies are available on the application of combined nanomaterials to mitigate salinity stress on potato plants (Solanum tuberosum L. cv. Diamont). In order to assess the effects of the sole or combined application of silicon (Si) and potassium (K) nanoparticles and biochar (Bc) on the agro-physiological properties and biochemical constituents of potato plants grown in saline soil, two open-field experiments were executed on a randomized complete block design (RCBD), with five replicates. The results show that the biochar application and nanoelements (n-K and n-Si) significantly improved the plant heights, the fresh and dry plant biomasses, the numbers of stems/plant, the leaf relative water content, the leaf chlorophyll content, the photosynthetic rate (Pn), the leaf stomatal conductance (Gc), and the tuber yields, compared to the untreated potato plants (CT). Moreover, the nanoelements and biochar improved the content of the endogenous elements of the plant tissues (N, P, K, Mg, Fe, Mn, and B), the leaf proline, and the leaf gibberellic acid (GA3), in addition to reducing the leaf abscisic acid content (ABA), the activity of catalase (CAT), and the peroxidase (POD) and polyphenol oxidase (PPO) in the leaves of salt-stressed potato plants. The combined treatment achieved maximum plant growth parameters, physiological parameters, and nutrient concentrations, and minimum transpiration rates (Tr), leaf abscisic acid content (ABA), and activities of the leaf antioxidant enzymes (CAT, POD, and PPO). Furthermore, the combined treatment also showed the highest tuber yield and tuber quality, including the contents of carbohydrates, proteins, and the endogenous nutrients of the tuber tissues (N, P, and K), and the lowest starch content. Moreover, Pearson’s correlation showed that the plant growth and the tuber yields of potato plants significantly and positively correlated with the photosynthesis rate, the internal CO2 concentration, the relative water content, the proline, the chlorophyll content, and the GA3, and that they were negatively correlated with the leaf Na content, PPO, CAT, ABA, MDA, and Tr. It might be concluded that nanoelement (n-K and n-Si) and biochar applications are a promising method to enhance the plant growth and crop productivity of potato plants grown under salinity conditions.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 648a-648
Author(s):  
Sanliang Gu ◽  
Lailiang Cheng ◽  
Leslie H. Fuchigami

`Early Girl' tomato plants (Lycopersicon esculentum Mill.) were grown in a medium containing peatmoss and perlite (60%:40% by volume). The medium was drenched with 0% or 5% GLK-8924 antitranspirant. Half of the plants were flushed daily with 250 mL water (leaching), and the other half were subirrigated by capillarity. The solution osmotic potential of the medium was reduced significantly by 5% GLK 8924 treatment, then recovered gradually to the control level after 3 days with leaching or 10 days without leaching. Leaf stomatal conductance, transpiration rate, and plant growth were depressed by the antitranspirant application, and the depression was alleviated by leaching. Neither antitranspirant GLK-8924 treatment nor leaching influenced leaf abscisic acid (ABA) content. The effect of the antitranspirant on leaf gas exchange and plant growth was highly related to the reduction in the solution osmotic potential of the medium, but not to leaf ABA content. Younger leaves had higher stomatal conductance and transpiration rate but lower ABA content than older leaves in general.


1992 ◽  
Vol 100 (2) ◽  
pp. 692-698 ◽  
Author(s):  
Aga Schulze ◽  
Philip J. Jensen ◽  
Mark Desrosiers ◽  
J. George Buta ◽  
Robert S. Bandurski

2004 ◽  
Vol 16 (3) ◽  
pp. 155-161 ◽  
Author(s):  
Mara de Menezes de Assis Gomes ◽  
Ana Maria Magalhães Andrade Lagôa ◽  
Camilo Lázaro Medina ◽  
Eduardo Caruso Machado ◽  
Marcos Antônio Machado

Thirty-month-old 'Pêra' orange trees grafted on 'Rangpur' lemon trees grown in 100 L pots were submitted to water stress by the suspension of irrigation. CO2 assimilation (A), transpiration (E) and stomatal conductance (g s) values declined from the seventh day of stress, although the leaf water potential at 6:00 a.m. (psipd) and at 2:00 p.m. (psi2) began to decline from the fifth day of water deficiency. The CO2 intercellular concentration (Ci) of water-stressed plants increased from the seventh day, reaching a maximum concentration on the day of most severe stress. The carboxylation efficiency, as revealed by the ratio A/Ci was low on this day and did not show the same values of non-stressed plants even after ten days of rewatering. After five days of rewatering only psi pd and psi2 were similar to control plants while A, E and g s were still different. When psi2 decreases, there was a trend for increasing abscisic acid (ABA) concentration in the leaves. Similarly, stomatal conductance was found to decrease as a function of decreasing psi2. ABA accumulation and stomatal closure occurred when psi2 was lower than -1.0 MPa. Water stress in 'Pera´ orange trees increased abscisic acid content with consequent stomatal closure and decreased psi2 values.


1999 ◽  
Vol 50 (337) ◽  
pp. 1359-1364 ◽  
Author(s):  
D. J. Carrier ◽  
E. J. Kendall ◽  
C. A. Bock ◽  
J. E. Cunningham ◽  
D. I. Dunstan

Sign in / Sign up

Export Citation Format

Share Document