scholarly journals Asphalt mixtures with high rates of recycled aggregates and modified bitumen with rubber at reduced temperature

2017 ◽  
Vol 19 (6) ◽  
pp. 1489-1498 ◽  
Author(s):  
Pedro Lastra-González ◽  
Miguel A. Calzada-Pérez ◽  
Daniel Castro-Fresno ◽  
Irune Indacoechea-Vega
Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7269
Author(s):  
Michele Porto ◽  
Paolino Caputo ◽  
Valeria Loise ◽  
Abraham A. Abe ◽  
Giulia Tarsi ◽  
...  

Recent studies have worked towards addressing environmental issues such as global warming and greenhouse gas emissions due to the increasing awareness of the depletion of natural resources. The asphalt industry is seeking to implement measures to reduce its carbon footprint and to promote sustainable operations. The reuse of several wastes and by-products is an example of a more eco-friendly activity that fulfils the circular economy principle. Among all possible solutions, the road pavement sector encourages, on one hand, the use of recycled materials as a partial replacement of the virgin lithic skeleton; on the other hand, it promotes the use of recycled materials to substituting for a portion of the petroleum bituminous binder. This study aims to use Re-refined Engine Oil Bottoms (REOBs) as a main substitute and additives from various industrial by-products as a full replacement for virgin bitumen, producing high-performing alternative binders. The REOBs have been improved by utilizing additives in an attempt to improve their specific properties and thus to bridge the gap between REOBs and traditional bituminous binders. An even larger amount of virgin and non-renewable resources can be saved using these new potential alternative binders together with the RAP aggregates. Thus, the reduction in the use of virgin materials is applied at the binder and the asphalt mixture levels. Rheological, spectroscopic, thermogravimetric, and mechanical analysis were used to characterize the properties, composition, and characteristics of the REOBs, REOB-modified binders, and asphalt mixes. Thanks to the rheological investigations of possible alternative binders, 18 blends were selected, since they behaved like an SBS-modified bitumen, and then they were used for producing the corresponding asphalt mixtures. The preliminary mechanical analysis of the asphalt mixtures shows that six mixes have promising responses in terms of stiffness, tensile resistance, and water susceptibility. Nevertheless, the high variability of recycled materials and by-products has to be taken into consideration during the definition of alternative binders and recycled asphalt mixtures. In fact, this study highlights the crucial effects of the chemical composition of the constituents and their compatibility on the behaviour of the final product. This preliminary study represents a first attempt to define alternative binders, which can be used in combination with recycled aggregates for producing more sustainable road materials. However, further analysis is necessary in order to assess the durability and the ageing tendency of the materials.


2021 ◽  
Vol 13 (4) ◽  
pp. 2146
Author(s):  
Anik Gupta ◽  
Carlos J. Slebi-Acevedo ◽  
Esther Lizasoain-Arteaga ◽  
Jorge Rodriguez-Hernandez ◽  
Daniel Castro-Fresno

Porous asphalt (PA) mixtures are more environmentally friendly but have lower durability than dense-graded mixtures. Additives can be incorporated into PA mixtures to enhance their mechanical strength; however, they may compromise the hydraulic characteristics, increase the total cost of pavement, and negatively affect the environment. In this paper, PA mixtures were produced with 5 different types of additives including 4 fibers and 1 filler. Their performances were compared with the reference mixtures containing virgin bitumen and polymer-modified bitumen. The performance of all mixes was assessed using: mechanical, hydraulic, economic, and environmental indicators. Then, the Delphi method was applied to compute the relative weights for the parameters in multi-criteria decision-making methods. Evaluation based on distance from average solution (EDAS), technique for order of the preference by similarity to ideal solution (TOPSIS), and weighted aggregated sum product assessment (WASPAS) were employed to rank the additives. According to the results obtained, aramid pulp displayed comparable and, for some parameters such as abrasion resistance, even better performance than polymer-modified bitumen, whereas cellulose fiber demonstrated the best performance regarding sustainability, due to economic and environmental benefits.


2021 ◽  
Vol 13 (6) ◽  
pp. 3315
Author(s):  
Mansour Fakhri ◽  
Danial Arzjani ◽  
Pooyan Ayar ◽  
Maede Mottaghi ◽  
Nima Arzjani

The use of waste materials has been increasingly conceived as a sustainable alternative to conventional materials in the road construction industry, as concerns have arisen from the uncontrolled exploitation of natural resources in recent years. Re-refined acidic sludge (RAS) obtained from a waste material—acidic sludge—is an alternative source for bitumen. This study’s primary purpose is to evaluate the resistance of warm mix asphalt (WMA) mixtures containing RAS and a polymeric additive against moisture damage and rutting. The modified bitumen studied in this research is a mixture of virgin bitumen 60/70, RAS (10, 20, and 30%), and amorphous poly alpha olefin (APAO) polymer. To this end, Marshall test, moisture susceptibility tests (i.e., tensile strength ratio (TSR), residual Marshall, and Texas boiling water), resilient modulus, and rutting assessment tests (i.e., dynamic creep, Marshall quotient, and Kim) were carried out. The results showed superior values for modified mixtures compared to the control mix considering the Marshall test. Moreover, the probability of a reduction in mixes’ moisture damage was proved by moisture sensitivity tests. The results showed that modified mixtures could improve asphalt mixtures’ permanent deformation resistance and its resilience modulus. Asphalt mixtures containing 20% RAS (substitute for bitumen) showed a better performance in all the experiments among the samples tested.


2016 ◽  
Vol 78 (7-2) ◽  
Author(s):  
Fauzan Mohd Jakarni ◽  
Muhammad Fudhail Rosli ◽  
Nur Izzi Md Yusoff ◽  
Md Maniruzzaman A Aziz ◽  
Ratnasamy Muniandy ◽  
...  

This paper presents a review of moisture damage performance tests on asphalt mixtures. The moisture damage remains to be a detriment to the durability of the Hot Mix Asphalt (HMA) pavement. Moisture damage can be defined in forms of adhesive failure between bitumen and aggregates and cohesive failure within bitumen. Aggregate mineralogy, bitumen characteristics and anti-stripping additive dominantly influence the performance of asphalt mixtures towards moisture damage alongside construction methods, climate and traffic loading. Various laboratory test methods have been developed to quantify the moisture damage performance of asphalt mixtures by resembles the action in the field, including qualitative test such as Boiling Water Test (ASTM D3625) and quantitative tests such as Modified Lottman Test (AASHTO T283). Both of these tests consist of two phases, which are conditioning and evaluation phase. This paper will review the effectiveness of the selected available tests based on various asphalt mixtures materials. Generally, this study indicates that asphalt mixtures consisted of limestone aggregates, modified bitumen and addition of anti-stripping additives will provide more resistant towards moisture damage. 


2018 ◽  
Vol 10 (8) ◽  
pp. 2590 ◽  
Author(s):  
Debora Acosta Alvarez ◽  
Anadelys Alonso Aenlle ◽  
Antonio Tenza-Abril

Recycled Aggregates (RA) from construction and demolition waste (CDW) are a technically viable alternative to manufacture of asphalt concrete (AC). The main objective of this work is to evaluate the properties of hot asphalt mixtures that have been manufactured with different sources of CDW (material from concrete test specimens, material from the demolition of sidewalks and waste from prefabrication plants) from Cuba. Dense asphalt mixtures were manufactured with a maximum aggregate size of 19 mm, partially replacing (40%) the natural aggregate fraction measured between 5 mm and 10 mm with three types of RA from Cuba. Marshall specimens were manufactured to determine the main properties of the AC in terms of density, voids, stability and deformation. Additionally, the stiffness modulus of the AC was evaluated at 7 °C, 25 °C and 50 °C. The results corroborate the potential for using these sources of CDW from Cuba as a RA in asphalt concrete, thereby contributing an important environmental and economic benefit.


2019 ◽  
Vol 3 (1) ◽  
pp. 11-16
Author(s):  
Che Norazman Che Wan ◽  

This paper is a review of the chemical and physical properties of coconut fiber in asphalt mixtures. Coconut fibers (CF) are natural fibers and also an agricultural waste, which is abundant after the extraction of juice and coconut fruit. Nowadays, CF has been studied for its potential use in the construction field to increase the strength of materials with its high tensile strength. Additionally, CF can also be one the materials in highway construction as it can improve the skid resistance of asphalt pavements. It was shown that CF treated with NaOH lowered the penetration value and increased the softening point of modified bitumen. Flow of bitumen also can be avoided at high mixing and compaction temperatures by adding 0.7% of CF.


Sign in / Sign up

Export Citation Format

Share Document