Significance of fetal behavioral studies

2006 ◽  
Vol 6 (3-4) ◽  
pp. 172-178 ◽  
Author(s):  
Kotaro Fukushima ◽  
Seiichi Morokuma ◽  
Hitoo Nakano
Keyword(s):  
2001 ◽  
Vol 15 (4) ◽  
pp. 256-274 ◽  
Author(s):  
Caterina Pesce ◽  
Rainer Bösel

Abstract In the present study we explored the focusing of visuospatial attention in subjects practicing and not practicing activities with high attentional demands. Similar to the studies of Castiello and Umiltà (e. g., 1990) , our experimental procedure was a variation of Posner's (1980) basic paradigm for exploring covert orienting of visuospatial attention. In a simple RT-task, a peripheral cue of varying size was presented unilaterally or bilaterally from a central fixation point and followed by a target at different stimulus-onset-asynchronies (SOAs). The target could occur validly inside the cue or invalidly outside the cue with varying spatial relation to its boundary. Event-related brain potentials (ERPs) and reaction times (RTs) were recorded to target stimuli under the different task conditions. RT and ERP findings showed converging aspects as well as dissociations. Electrophysiological results revealed an amplitude modulation of the ERPs in the early and late Nd time interval at both anterior and posterior scalp sites, which seems to be related to the effects of peripheral informative cues as well as to the attentional expertise. Results were: (1) shorter latency effects confirm the positive-going amplitude enhancement elicited by unilateral peripheral cues and strengthen the criticism against the neutrality of spatially nonpredictive peripheral cueing of all possible target locations which is often presumed in behavioral studies. (2) Longer latency effects show that subjects with attentional expertise modulate the distribution of the attentional resources in the visual space differently than nonexperienced subjects. Skilled practice may lead to minimizing attentional costs by automatizing the use of a span of attention that is adapted to the most frequent task demands and endogenously increases the allocation of resources to cope with less usual attending conditions.


2018 ◽  
Author(s):  
Mark Allen Thornton ◽  
Miriam E. Weaverdyck ◽  
Judith Mildner ◽  
Diana Tamir

One can never know the internal workings of another person – one can only infer others’ mental states based on external cues. In contrast, each person has direct access to the contents of their own mind. Here we test the hypothesis that this privileged access shapes the way people represent internal mental experiences, such that they represent their own mental states more distinctly than the states of others. Across four studies, participants considered their own and others’ mental states; analyses measured the distinctiveness of mental state representations. Two neuroimaging studies used representational similarity analyses to demonstrate that the social brain manifests more distinct activity patterns when thinking about one’s own states versus others’. Two behavioral studies support these findings. Further, they demonstrate that people differentiate between states less as social distance increases. Together these results suggest that we represent our own mind with greater granularity than the minds of others.


1987 ◽  
Vol 129 (3) ◽  
pp. 458-462 ◽  
Author(s):  
L. Levine ◽  
O. Olvera ◽  
R. F. Rockwell ◽  
M. E. de la Rosa ◽  
E. Akin ◽  
...  

2020 ◽  
Vol 10 (11) ◽  
pp. 3817
Author(s):  
Soheil Keshmiri ◽  
Masahiro Shiomi ◽  
Kodai Shatani ◽  
Takashi Minato ◽  
Hiroshi Ishiguro

A prevailing assumption in many behavioral studies is the underlying normal distribution of the data under investigation. In this regard, although it appears plausible to presume a certain degree of similarity among individuals, this presumption does not necessarily warrant such simplifying assumptions as average or normally distributed human behavioral responses. In the present study, we examine the extent of such assumptions by considering the case of human–human touch interaction in which individuals signal their face area pre-touch distance boundaries. We then use these pre-touch distances along with their respective azimuth and elevation angles around the face area and perform three types of regression-based analyses to estimate a generalized facial pre-touch distance boundary. First, we use a Gaussian processes regression to evaluate whether assumption of normal distribution in participants’ reactions warrants a reliable estimate of this boundary. Second, we apply a support vector regression (SVR) to determine whether estimating this space by minimizing the orthogonal distance between participants’ pre-touch data and its corresponding pre-touch boundary can yield a better result. Third, we use ordinary regression to validate the utility of a non-parametric regressor with a simple regularization criterion in estimating such a pre-touch space. In addition, we compare these models with the scenarios in which a fixed boundary distance (i.e., a spherical boundary) is adopted. We show that within the context of facial pre-touch interaction, normal distribution does not capture the variability that is exhibited by human subjects during such non-verbal interaction. We also provide evidence that such interactions can be more adequately estimated by considering the individuals’ variable behavior and preferences through such estimation strategies as ordinary regression that solely relies on the distribution of their observed behavior which may not necessarily follow a parametric distribution.


2021 ◽  
Vol 11 (1) ◽  
pp. 112-128
Author(s):  
Caitlin N. Price ◽  
Deborah Moncrieff

Communication in noise is a complex process requiring efficient neural encoding throughout the entire auditory pathway as well as contributions from higher-order cognitive processes (i.e., attention) to extract speech cues for perception. Thus, identifying effective clinical interventions for individuals with speech-in-noise deficits relies on the disentanglement of bottom-up (sensory) and top-down (cognitive) factors to appropriately determine the area of deficit; yet, how attention may interact with early encoding of sensory inputs remains unclear. For decades, attentional theorists have attempted to address this question with cleverly designed behavioral studies, but the neural processes and interactions underlying attention’s role in speech perception remain unresolved. While anatomical and electrophysiological studies have investigated the neurological structures contributing to attentional processes and revealed relevant brain–behavior relationships, recent electrophysiological techniques (i.e., simultaneous recording of brainstem and cortical responses) may provide novel insight regarding the relationship between early sensory processing and top-down attentional influences. In this article, we review relevant theories that guide our present understanding of attentional processes, discuss current electrophysiological evidence of attentional involvement in auditory processing across subcortical and cortical levels, and propose areas for future study that will inform the development of more targeted and effective clinical interventions for individuals with speech-in-noise deficits.


2020 ◽  
pp. 1-4
Author(s):  
Catie Cramer ◽  
Theresa L. Ollivett

Abstract Bovine respiratory disease (BRD) is an important disease in dairy calves due to its long-lasting effects. Early identification results in better outcomes for the animal, but producers struggle to identify all calves with BRD. Sickness behavior, or the behavioral changes that accompany illness, has been investigated for its usefulness as a disease detection tool. Behavioral changes associated with BRD include decreased milk intake and drinking speed, depressed attitude, and less likelihood of approaching a novel object or stationary human. Behavioral measurements are useful, as they can be collected automatically or with little financial input. However, one limitation of many BRD behavioral studies includes the use of either lung auscultation or clinical signs as reference methods, which are imperfect. Additionally, external factors may influence the expression of sickness behavior, which can affect if and when behavior can be used to identify calves with BRD. Behavioral measures available to detect BRD lack adequate sensitivity and specificity to be the sole means of disease detection, especially when detection tools, such as calf lung ultrasound, have better test characteristics. However, using behavioral assessments in addition to other detection methods can allow for a robust BRD detection program that can ameliorate the consequences of BRD.


2020 ◽  
Vol 164 ◽  
pp. 10015
Author(s):  
Irina Gurtueva ◽  
Olga Nagoeva ◽  
Inna Pshenokova

This paper proposes a concept of a new approach to the development of speech recognition systems using multi-agent neurocognitive modeling. The fundamental foundations of these developments are based on the theory of cognitive psychology and neuroscience, and advances in computer science. The purpose of this work is the development of general theoretical principles of sound image recognition by an intelligent robot and, as the sequence, the development of a universal system of automatic speech recognition, resistant to speech variability, not only with respect to the individual characteristics of the speaker, but also with respect to the diversity of accents. Based on the analysis of experimental data obtained from behavioral studies, as well as theoretical model ideas about the mechanisms of speech recognition from the point of view of psycholinguistic knowledge, an algorithm resistant to variety of accents for machine learning with imitation of the formation of a person’s phonemic hearing has been developed.


2019 ◽  
Vol 31 (7) ◽  
pp. 1079-1090 ◽  
Author(s):  
Peter S. Whitehead ◽  
Mathilde M. Ooi ◽  
Tobias Egner ◽  
Marty G. Woldorff

The contents of working memory (WM) guide visual attention toward matching features, with visual search being faster when the target and a feature of an item held in WM spatially overlap (validly cued) than when they occur at different locations (invalidly cued). Recent behavioral studies have indicated that attentional capture by WM content can be modulated by cognitive control: When WM cues are reliably helpful to visual search (predictably valid), capture is enhanced, but when reliably detrimental (predictably invalid), capture is attenuated. The neural mechanisms underlying this effect are not well understood, however. Here, we leveraged the high temporal resolution of ERPs time-locked to the onset of the search display to determine how and at what processing stage cognitive control modulates the search process. We manipulated predictability by grouping trials into unpredictable (50% valid/invalid) and predictable (100% valid, 100% invalid) blocks. Behavioral results confirmed that predictability modulated WM-related capture. Comparison of ERPs to the search arrays showed that the N2pc, a posteriorly distributed signature of initial attentional orienting toward a lateralized target, was not impacted by target validity predictability. However, a longer latency, more anterior, lateralized effect—here, termed the “contralateral attention-related negativity”—was reduced under predictable conditions. This reduction interacted with validity, with substantially greater reduction for invalid than valid trials. These data suggest cognitive control over attentional capture by WM content does not affect the initial attentional-orienting process but can reduce the need to marshal later control mechanisms for processing relevant items in the visual world.


2015 ◽  
Vol 26 (5) ◽  
pp. 1268-1273 ◽  
Author(s):  
Andrés López-Sepulcre ◽  
Sebastiano De Bona ◽  
Janne K. Valkonen ◽  
Kate D.L. Umbers ◽  
Johanna Mappes

Sign in / Sign up

Export Citation Format

Share Document