Effect of moisture absorption on the mechanical performance of natural fiber reinforced woven hybrid bio-composites

2018 ◽  
Vol 17 (1) ◽  
pp. 84-100 ◽  
Author(s):  
Vijay Chaudhary ◽  
Pramendra Kumar Bajpai ◽  
Sachin Maheshwari
2013 ◽  
Vol 130 (2) ◽  
pp. 969-980 ◽  
Author(s):  
Nicole-Lee M. Robertson ◽  
John A. Nychka ◽  
Kirill Alemaskin ◽  
John D. Wolodko

Author(s):  
K N CHETHAN ◽  
Sharun Hegde ◽  
Rajesh Kumar ◽  
Padmaraj N H

Materials have helped in evolving technology to a great extent. Composites have replaced conventional metals/non-metals because of their lightweight. Natural Fibres have been need of the hour owing to environmental concerns and ease of availability. In this work, Cannabis Sativa fibers were treated with 5% Potassium Hydroxide solution. The laminates were prepared by the Compression Moulding technique by reinforcing treated and untreated fibers with an epoxy matrix material. To access the durability of natural fiber composites in the marine environment, prepared laminates were aged in seawater for 150 days. Tensile, flexural and moisture absorption behavior tests have been performed to estimate the durability in seawater. The data obtained have been compared with pristine treated and untreated fiber reinforced samples. From the results, it has been observed that tensile and flexural behavior of untreated fiber reinforced composites were superior to a treated counterpart in both pristine and aged conditions.


2017 ◽  
Vol 51 (28) ◽  
pp. 3909-3922 ◽  
Author(s):  
Priyadarshi Tapas Ranjan Swain ◽  
Sandhyarani Biswas

The present paper discovers the effect of ceramic filler inclusion on physico-mechanical and water absorption behaviour of untreated and chemically treated (alkali and benzoyl chloride treated) bi-directional jute natural-fiber-reinforced epoxy composites. In practice, the major drawbacks of using natural fibers are their high degree of moisture absorption and poor dimensional stability. Currently, chemical treatments are able to induce fiber modifications that increase their resistance when utilized in composite products. Jute fibers were subjected to various chemical modifications to improve the interfacial bonding with the matrix. In this study, an analysis has been carried out to make pre-treated jute fiber (10, 20, 30 and 40 wt.%) and different filler content (5 and 10 wt.%) with epoxy-based composites. A comparative study of all the untreated jute/aluminium oxide based hybrid composites with chemically treated jute/aluminium oxide based hybrid composites was carried out. The investigational result reveals that chemically treated composites considerably improved the mechanical properties of the composite. The maximum water absorption resistance and strength properties were found with benzoyl chloride-treated fiber-reinforced composite. Lastly, the surface morphology of fractured surfaces after tensile and flexural testing is studied using scanning electron microscope.


2016 ◽  
Vol 47 (8) ◽  
pp. 2153-2183 ◽  
Author(s):  
Azam Ali ◽  
Khubab Shaker ◽  
Yasir Nawab ◽  
Madeha Jabbar ◽  
Tanveer Hussain ◽  
...  

There is a growing interest in the development of natural fiber-reinforced composites, most likely due to their wide availability, low cost, environment friendliness, and sustainability. The market size for natural fiber-reinforced composites is projected to reach $5.83 billion by 2019, with a compound annual growth rate of 12.3%. The composite materials reinforced with wood, cotton, jute, flax or other natural fibers fall under this category. Meanwhile, some major factors limiting the large scale production of natural fiber composites include the tendency of natural fiber to absorb water, degradation by microorganisms and sunlight and ultimately low strength and service life. This paper has focused to review the different natural fiber treatments used to reduce the moisture absorption and fiber degradation. The effect of these treatments on the mechanical properties of these composites has also been summarized.


2014 ◽  
Vol 657 ◽  
pp. 397-401
Author(s):  
Dragos Hodorogea

Due to ecological and sustainability constraints, in late years we see great achievements in green technology in the field of materials science. The development of high-performance biocomposites (made from natural resources) is increasing worldwide. The challenge in working with natural fiber reinforced composites is the large spectrum of possibilities for making them.Biocomposites properties are influenced by a number of variables, including the fiber type, environmental conditions (where the plant fibers are sourced), processing methods, and any modification of the fiber. It is well known that recently exists a large interest in the industrial applications of composites containing biofibers reinforced with biopolymers. The characteristics of reinforcing fibers used in biocomposites, including source, type, structure, composition, as well as mechanical properties, will be reviewed. The variety of biocomposite processing techniques as well as the factors (moisture content, fiber type and content, coupling agents and their influence on composites properties) affecting these processes will be discussed.Techniques for processing the natural fiber reinforced composites will be discussed based on thermoplastic matrices (compression molding, extrusion, injection molding, and thermoforming), and thermosets (resin transfermolding, sheet molding compound). Their influence on mechanical performance (tensile, flexural and impact properties) will be evaluated. Finally, the work will conclude with recent developments and future trends of biocomposites.


2005 ◽  
Vol 297-300 ◽  
pp. 213-218 ◽  
Author(s):  
Yang Bae Jeon ◽  
Do Won Seo ◽  
Jae Kyoo Lim

Using natural fibers that are inexpensive, lightweight and biodegradable, as the reinforcement for composites is difficult due to their poor interfacial properties between hydrophilic fiber and hydrophobic polymer matrices. It is necessary to evaluate fracture toughness of natural fiber reinforced composites according to water absorption rates to improve mechanical performance of those. In this study, compact tension fracture test was conducted to evaluate fracture toughness with the various specimens. The value of fracture toughness has the tendency to decrease as water absorption rate increases. And different surface treatment methods and different polymer matrices have influence on the value of fracture toughness.


Sign in / Sign up

Export Citation Format

Share Document