scholarly journals Improved Algorithms for Data-Gathering Time in Sensor Networks II: Ring, Tree, and Grid Topologies

2009 ◽  
Vol 5 (5) ◽  
pp. 463-479 ◽  
Author(s):  
Yoram Revah ◽  
Michael Segal

We address the problem of gathering information in sensor webs consisting of sensors nodes, wherein a round of communication sensor nodes have messages to be sent to a distant central node (called the base station) over the shortest path. There is a wide range of data gathering applications like target and hazard detection, environmental monitoring, battlefield surveillance, etc. Consequently, efficient data collection solutions are needed to improve the performance of the network. In this article, we take into account the fact that interference can occur at the reception of a message at the receiver sensor. In order to save redundant retransmissions and energy, we assume a known distribution of sources (each node wants to transmit at most one packet) and one common destination. We provide a number of scheduling algorithms jointly minimizing both the completion time and the average packet delivery time. We define our network model using directional antennas and consider Ring, Tree, and Grid Network (and its generality) topologies. All our algorithms run in low-polynomial time.

Author(s):  
Khushboo Jain ◽  
Anoop Kumar

Continuous-monitoring applications in sensor network applications require periodic data transmissions to the base-station (BS), which may lead to unnecessary energy depletion. The energy-efficient data aggregation solutions in sensor networks have evolved as one of the favorable fields for such applications. Former research works have recommended many spatial-temporal designs and prototypes for successfully minimizing the data-gathering overheads, but these are constrained to their relevance. This work has proposed a data aggregation technique for homogeneous application set-ups in sensor networks. For this, the authors have employed two ways of model generation for reducing correlated spatial-temporal data in cluster-based sensor networks: one at the Sensor nodes (SNs) and the other at the Cluster heads (CHs). Building on this idea, the authors propose two types of data filtration, first at the SNs for determining temporal redundancies (TRs) in data readings by both relative deviation (RD) and adaptive frame method (AFM) and second at the CHs for determining spatial redundancies (SRs) by both RD and AFM.


Resource constrained wireless sensor nodes are generally randomly distributed in a given area of interest to sense required information and the sensed data is transmitted to the sink station or Base Station (BS) through various clustering and data routing algorithms. The standard clustering algorithms that are aimed at efficient data routing techniques are Low Energy Adaptive Clustering Hierarchy (LEACH) algorithm , Distributed Energy Efficient Clustering (DEEC) algorithm, Stable Election Protocol (SEP) and various others. Most of these algorithms are the various variants of LEACH. Our proposed scheme of data gathering and routing is based on a two hop structure wherein the Cluster Leader (CL) forwards the aggregated received data from the Cluster members to the Sink directly. The Chance-value that determines the Cluster Leader in a round is decided by a combination of parameters specific to the Sensor nodes in the cluster. In our simulation approach we have also tried to analyze the effect of changing density of sensor nodes in the select area. Thus in our proposed scheme, we embark on a fixed Clustering scheme where the CL is selected dynamically so as to extend the network’s lifetime and achieve enhanced throughput in comparison to the standard algorithms like DEEC, SEP and LEACH.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Fan Chao ◽  
Zhiqin He ◽  
Renkuan Feng ◽  
Xiao Wang ◽  
Xiangping Chen ◽  
...  

Tradition wireless sensor networks (WSNs) transmit data by single or multiple hops. However, some sensor nodes (SNs) close to a static base station forward data more frequently than others, which results in the problem of energy holes and makes networks fragile. One promising solution is to use a mobile node as a mobile sink (MS), which is especially useful in energy-constrained networks. In these applications, the tour planning of MS is a key to guarantee the network performance. In this paper, a novel strategy is proposed to reduce the latency of mobile data gathering in a WSN while the routing strategies and tour planning of MS are jointly optimized. First, the issue of network coverage is discussed before the appropriate number of clusters being calculated. A dynamic clustering scheme is then developed where a virtual cluster center is defined as the MS sojourn for data collection. Afterwards, a tour planning of MS based on prediction is proposed subject to minimizing the traveling distance to collect data. The proposed method is simulated in a MATLAB platform to show the overall performance of the developed system. Furthermore, the physical tests on a test rig are also carried out where a small WSN based on an unmanned aerial vehicle (UAV) is developed in our laboratory. The test results validate the feasibility and effectiveness of the method proposed.


2020 ◽  
Vol 11 (1) ◽  
pp. 36-48
Author(s):  
Amiya Bhusan Bagjadab ◽  
Sushree Bibhuprada B. Priyadarshini

Wireless sensor networks are commonly used to monitor certain regions and to collect data for several application domains. Generally, in wireless sensor networks, data are routed in a multi-hop fashion towards a static sink. In this scenario, the nodes closer to the sink become heavily involved in packet forwarding, and their battery power is exhausted rapidly. This article proposes that a special node (i.e., mobile sink) will move in the specified region and collect the data from the sensors and transmit it to the base station such that the communication distance of the sensors will be reduced. The aim is to provide a track for the sink such that it covers maximum sensor nodes. Here, the authors compared two tracks theoretically and in the future will try to simulate the two tracks for the sink movement so as to identify the better one.


Author(s):  
Vasin Chaoboworn ◽  
Yoschanin Sasiwat ◽  
Dujdow Buranapanichkit ◽  
Hiroshi Saito ◽  
Apidet Booranawong

In this paper, the communication reliability of a 2.4 GHz multi-hop wireless sensor network (WSN) in various test scenarios is evaluated through experiments. First, we implement an autonomous communication procedure for a multi-hop WSN on Tmote sky sensor nodes; 2.4 GHz, an IEEE 802.15.4 standard. Here, all nodes including a transmitter node (Tx), forwarder nodes (Fw), and a base station node (BS) can automatically work for transmitting and receiving data. The experiments have been tested in different scenarios including: i) in a room, ii) line-of-sight (LoS) communications on the 2nd floor of a building, iii) LoS and non-line-of-sight (NLoS) communications on the 1st floor to the 2nd floor, iv) LoS and NLoS communications from outdoor to the 1st and the 2nd floors of the building. The experimental results demonstrate that the communication reliability indicated by the packet delivery ratio (PDR) can vary from 99.89% in the case of i) to 14.40% in the case of iv), respectively. Here, the experiments reveal that multi-hop wireless commutations for outdoor to indoor with different floors and NLoS largely affect the PDR results, where the PDR more decreases from the best case (i.e., the case of a)) by 85.49%. Our research methodology and findings can be useful for users and researchers to carefully consider and deploy an efficient 2.4 GHz multi-hop WSN in their works, since different WSN applications require different communication reliability level.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1326
Author(s):  
Mukhtar Ghaleb ◽  
Shamala Subramaniam ◽  
Safwan M. Ghaleb

A recent trend in wireless sensor network (WSN) research is the deployment of a mobile element (ME) for transporting data from sensor nodes to the base station (BS). This helps to achieve significant energy savings as it minimizes the communications required among nodes. However, a major problem is the large data gathering latency. To address this issue, the ME (i.e., vehicle) should visit certain rendezvous points (i.e., nodes) to collect data before it returns to the BS to minimize the data gathering latency. In view of this, we propose a rendezvous-based approach where some certain nodes serve as rendezvous points (RPs). The RPs gather data using data compression techniques from nearby sources (i.e., affiliated nodes) and transfer them to a mobile element when the ME traverses their paths. This minimizes the number of nodes to be visited, thereby reducing data gathering latency. Furthermore, we propose a minimal constrained rendezvous point (MCRP) algorithm, which ensures the aggregated data are relayed to the RPs based on three constraints: (i) bounded relay hop, (ii) the number of affiliation nodes, and (iii) location of the RP. The algorithm is designed to consider the ME’s tour length and the shortest path tree (SPT) jointly. The effectiveness of the algorithm is validated through extensive simulations against four existing algorithms. Results show that the MCRP algorithm outperforms the compared schemes in terms of the ME’s tour length, data gathering latency, and the number of rendezvous nodes. MCRP exhibits a relatively close performance to other algorithms with respect to power algorithms.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Oday Jerew ◽  
Nizar Al Bassam

Recent research shows that significant energy saving can be achieved in wireless sensor networks by using mobile devices. A mobile device roams sensing fields and collects data from sensors through a short transmission range. Multihop communication is used to improve data gathering by reducing the tour length of the mobile device. In this paper we study the trade-off between energy saving and data gathering latency in wireless sensor networks. In particular, we examine the balance between the relay hop count and the tour length of a mobile Base Station (BS). We propose two heuristic algorithms, Adjacent Tree-Bounded Hop Algorithm (AT-BHA) and Farthest Node First-Bounded Hop Algorithm (FNF-BHA), to reduce energy consumption of sensor nodes. The proposed algorithms select groups of Collection Trees (CTs) and a subset of Collection Location (CL) sensor nodes to buffer and forward data to the mobile BS when it arrives. Each CL node receives sensing data from its CT nodes within bounded hop count. Extensive experiments by simulation are conducted to evaluate the performance of the proposed algorithms against another heuristic. We demonstrate that the proposed algorithms outperform the existing work with the mean of the length of mobile BS tour.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2839
Author(s):  
Sabitri Poudel ◽  
Sangman Moh

In unmanned aerial vehicle (UAV)-aided wireless sensor networks (UWSNs), a UAV is employed as a mobile sink to gather data from sensor nodes. Incorporating UAV helps prolong the network lifetime and avoid the energy-hole problem faced by sensor networks. In emergency applications, timely data collection from sensor nodes and transferal of the data to the base station (BS) is a prime requisite. The timely and safe path of UAV is one of the fundamental premises for effective UWSN operations. It is essential and challenging to identify a suitable path in an environment comprising various obstacles and to ensure that the path can efficiently reach the target point. This paper proposes a hybrid path planning (HPP) algorithm for efficient data collection by assuring the shortest collision-free path for UAV in emergency environments. In the proposed HPP scheme, the probabilistic roadmap (PRM) algorithm is used to design the shortest trajectory map and the optimized artificial bee colony (ABC) algorithm to improve different path constraints in a three-dimensional environment. Our simulation results show that the proposed HPP outperforms the PRM and conventional ABC schemes significantly in terms of flight time, energy consumption, convergence time, and flight path.


Sensors are regarded as significant components of electronic devices. The sensor nodes deployed with limited resources, such as the power of battery inserted in the sensor nodes. So the lifetime of wireless sensor networks(WSNs) can be increased by using the energy of the sensor nodes in an efficient way. A major part of energy is consumed during the communication of data. Also, the growing demand for usage of wireless sensors applications in different aspects makes the quality-of-service(QoS) to be one of the paramount issues in wireless sensors applications. QoS guarantee in WSNs is difficult and more challenging due to the fact that the sensors have limited resources and the various applications running over these networks have different constraints in their nature and requirements. The packet delivery ratio(PDR) is a major factor of QoS. To achieve high QoS the packet delivery ratio should be maximum. The energy-efficient unequal clustering routing protocol (EEUCR) is evaluated and results show that it enhances the packet delivery ratio(PDR) and a lifetime of WSNs. In this protocol, the area of the network is divided into a number of rings of unequal size and each ring is further divided into a number of clusters. Rings nearer to the base station(BS) have smaller area and area of rings keeps on increasing as the distance from BS increases for balanced energy consumption. The nodes with heterogeneous energy are deployed in the network. Nodes nearer to the base station have higher energy as compared to farther nodes. Static clustering is used but cluster heads(CHs) are not fixed and are elected on the basis of remaining energy. This helps to increase lifetime of EEUCR. PDR of EEUCR is improved because multiple rings help to find better route which further aids to ensure safe reception of packets at the destination. Simulation results are compared with existing protocols and show that this algorithm gives better results.


Sign in / Sign up

Export Citation Format

Share Document