An Analysis of Exhaust Emissions on a Diesel Engine Operation by Biodiesel

Author(s):  
C. İlkiliç
Fuel ◽  
2010 ◽  
Vol 89 (2) ◽  
pp. 438-456 ◽  
Author(s):  
Octavio Armas ◽  
Kuen Yehliu ◽  
André L. Boehman

Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6569
Author(s):  
Monika Andrych-Zalewska ◽  
Zdzisław Chłopek ◽  
Jerzy Merkisz ◽  
Jacek Pielecha

The application of a catalyst on a surface inside a combustion chamber is known as a supplementary method of exhaust gas aftertreatment. The efficiency of this method in the reduction in exhaust emissions as well as its influence on other engine properties has been analyzed in multiple scientific works. Most often, these works present the results of investigations carried out on dynamometers under engine stationary conditions. There are no results of the catalyst investigations performed under dynamic states, particularly on-going real time analyses during engine operation. Therefore, the authors set out to explore the efficiency of the in-cylinder catalyst of a diesel engine under dynamic conditions simulating actual vehicle operation. A unique methodology was applied. The investigations were carried out in road conditions in a test simulating the New European Driving Cycle (NEDC) homologation test in compliance with the similarity criteria of the zero-dimensional characteristics of vehicle speed during the investigations and in the homologation test. For the research, the authors used portable exhaust emissions measurement equipment. A unique method of test results analysis was also applied (a continuous method in the time domain). As a result of the tests being repeated several times, it was observed that the application of an internal catalyst under different operating engine conditions repeatedly results in: an approx. 2% reduction in the emissions of carbon monoxide, hydrocarbons, and carbon dioxide; a similar increase in the emission of nitrogen oxides; and a significant (over 10%) reduction in the particle number. The obtained results substantiate the purpose of actions aiming at improving the efficiency of the internal catalyst.


2019 ◽  
Vol 11 (8) ◽  
pp. 2188 ◽  
Author(s):  
Karol Tucki ◽  
Remigiusz Mruk ◽  
Olga Orynycz ◽  
Katarzyna Botwińska ◽  
Arkadiusz Gola ◽  
...  

Nowadays more and more emphasis is placed on the protection of the natural environment. Scientists notice that global warming is associated with an increase of carbon dioxide emissions, which results inter alia from the combustion of gasoline, oil, and coal. To reduce the problem of pollution from transport, the EU is introducing increasingly stringent emission standards which should correspond to sustainable conditions of the environment during the operation of motor vehicles. The emissivity value of substances, such as nitrogen oxides (NOx), hydrocarbons (HC), carbon monoxide (CO), as well as solid particles, was determined. The aim of this paper was to examine, by means of simulation in the Scilab program, the exhaust emissions generated by the 1.3 MultiJet Fiat Panda diesel engine, and in particular, carbon monoxide and nitrogen oxides (verified on the basis of laboratory tests). The Fiat Panda passenger car was selected for the test. The fuels supplied to the tested engine were diesel and FAME (fatty acid methyl esters). The Scilab program, which simulated the diesel engine operation, was the tool for analyzing the exhaust toxicity test. The combustion of biodiesel does not necessarily mean a smaller amount of exhaust emissions, as could be concluded on the basis of information contained in the subject literature. The obtained results were compared with the currently valid EURO-6 standard, for which the limit value for CO is 0.5 g/km, and for NOx − 0.08 g/km, and it can be seen that the emission of carbon monoxide did not exceed the standards in any case examined. Unfortunately, when analyzing the total emissions of nitrogen oxides, the situation was completely the opposite and the emissions were exceeded by 20–30%.


2019 ◽  
Vol 178 (3) ◽  
pp. 38-45
Author(s):  
Jerzy MERKISZ ◽  
Monika ANDRYCH-ZALEWSKA ◽  
Jacek PIELECHA

The article concerns the use of an in-cylinder catalyst that allows reducing the exhaust emissions during diesel engine operation. This is an additional method of exhaust emission reduction – however, the active component is placed inside the combustion chamber – hence much closest to the combustion process. This allows reducing the emissions at the very source (catalyst applied on the glow plugs). Such solutions are necessary because the reduction of exhaust emissions from vehicles is a key aspect of reducing the negative impact of transport on the environment.


Author(s):  
Takayuki MORINO ◽  
Yuuki KIKUCHI ◽  
Yuuichi IINO ◽  
Nobuyuki SUZUKI ◽  
Takaaki MORIMUNE

Author(s):  
H Masjuki ◽  
M Z Abdulmuin ◽  
H S Sii

Results of exhaust emissions and lube oil analysis of a diesel engine fuelled with Malaysian palm oil diesel (POD or palm oil methyl esters) and ordinary diesel (OD) emulsions containing 5 and 10 per cent of water by volume are compared with those obtained when 100 per cent POD and OD fuel were used. Very promising results have been obtained. Neither the lower cetane number of POD fuel nor its emulsification with water presented any obstacle to the operation of a diesel engine during steady state engine tests and the 20 hour endurance tests. Polymerization and carbon deposits on fuel injector nozzles were monitored. Engine performance and fuel consumption for POD and its emulsions are comparable with those of OD fuel. Accumulations of wear metal debris in crank-case oil samples were lower with POD and emulsified fuels compared with baseline OD fuel. Both OD and POD emulsions with 10 per cent water by volume show a promising tendency for wear resistance. The exhaust emissions for POD and emulsified fuels are found to be much cleaner, containing less CO, CO2, HC, NOx, SOx and smoke level. Power output is slightly reduced when using POD and emulsified fuels.


Author(s):  
Petar Kazakov ◽  
Atanas Iliev ◽  
Emil Marinov

Over the decades, more attention has been paid to emissions from the means of transport and the use of different fuels and combustion fuels for the operation of internal combustion engines than on fuel consumption. This, in turn, enables research into products that are said to reduce fuel consumption. The report summarizes four studies of fuel-related innovation products. The studies covered by this report are conducted with diesel fuel and usually contain diesel fuel and three additives for it. Manufacturers of additives are based on already existing studies showing a 10-30% reduction in fuel consumption. Comparative experimental studies related to the use of commercially available diesel fuel with and without the use of additives have been performed in laboratory conditions. The studies were carried out on a stationary diesel engine СМД-17КН equipped with brake КИ1368В. Repeated results were recorded, but they did not confirm the significant positive effect of additives on specific fuel consumption. In some cases, the factors affecting errors in this type of research on the effectiveness of fuel additives for commercial purposes are considered. The reasons for the positive effects of such use of additives in certain engine operating modes are also clarified.


Sign in / Sign up

Export Citation Format

Share Document