scholarly journals Toxicity of Exhaust Fumes (CO, NOx) of the Compression-Ignition (Diesel) Engine with the Use of Simulation

2019 ◽  
Vol 11 (8) ◽  
pp. 2188 ◽  
Author(s):  
Karol Tucki ◽  
Remigiusz Mruk ◽  
Olga Orynycz ◽  
Katarzyna Botwińska ◽  
Arkadiusz Gola ◽  
...  

Nowadays more and more emphasis is placed on the protection of the natural environment. Scientists notice that global warming is associated with an increase of carbon dioxide emissions, which results inter alia from the combustion of gasoline, oil, and coal. To reduce the problem of pollution from transport, the EU is introducing increasingly stringent emission standards which should correspond to sustainable conditions of the environment during the operation of motor vehicles. The emissivity value of substances, such as nitrogen oxides (NOx), hydrocarbons (HC), carbon monoxide (CO), as well as solid particles, was determined. The aim of this paper was to examine, by means of simulation in the Scilab program, the exhaust emissions generated by the 1.3 MultiJet Fiat Panda diesel engine, and in particular, carbon monoxide and nitrogen oxides (verified on the basis of laboratory tests). The Fiat Panda passenger car was selected for the test. The fuels supplied to the tested engine were diesel and FAME (fatty acid methyl esters). The Scilab program, which simulated the diesel engine operation, was the tool for analyzing the exhaust toxicity test. The combustion of biodiesel does not necessarily mean a smaller amount of exhaust emissions, as could be concluded on the basis of information contained in the subject literature. The obtained results were compared with the currently valid EURO-6 standard, for which the limit value for CO is 0.5 g/km, and for NOx − 0.08 g/km, and it can be seen that the emission of carbon monoxide did not exceed the standards in any case examined. Unfortunately, when analyzing the total emissions of nitrogen oxides, the situation was completely the opposite and the emissions were exceeded by 20–30%.

2021 ◽  
pp. 28-32
Author(s):  
VALERIY L. CHUMAKOV ◽  

The paper shows some ways to improve the environmental characteristics of a diesel engine using gaseous hydrocarbon fuel and operating the engine in a gas-diesel cycle mode. Some possibilities to reduce toxic components of exhaust gases in a gas-diesel engine operating on liquefi ed propane-butane mixtures have been studied. Experiments carried out in a wide range of load from 10 to 100% and speed from 1400 to 2000 rpm showed that the gas-diesel engine provides a suffi ciently high level of diesel fuel replacement with gas hydrocarbon fuel. The authors indicate some eff ective ways to reduce the toxicity of exhaust gases. The engine power should be adjusted by the simultaneous supply of fuel, gas and throttling the air charge in the intake manifold. This method enriches the fi rst combusting portions to reduce nitrogen oxides and maintains the depletion of the main charge within the fl ammability limits of the gas-air charge to reduce carbon monoxide and hydrocarbons. The authors found that when the engine operates in a gas-diesel cycle mode, the power change provides a decrease in nitrogen oxide emissions of gas-diesel fuel only due to gas supply in almost the entire load range as compared to the pure diesel. At high loads (more than 80%) stable engine operation is ensured up to 90% of diesel fuel replaced by gas. Even at 10% of diesel fuel used the concentration of nitrogen oxides decreases by at least 15…20% as compared with a diesel engine in the entire load range. However, there is an increased emission of hydrocarbons and carbon monoxide in the exhaust gases. Further experimental studies have shown that optimization of the gas diesel regulation can reduce the mass emission of nitrogen oxides contained in exhaust gases in 2…3 times and greatly reduce the emission of incomplete combustion products – carbon monoxide and hydrocarbons.


Author(s):  
H Masjuki ◽  
M Z Abdulmuin ◽  
H S Sii

Results of exhaust emissions and lube oil analysis of a diesel engine fuelled with Malaysian palm oil diesel (POD or palm oil methyl esters) and ordinary diesel (OD) emulsions containing 5 and 10 per cent of water by volume are compared with those obtained when 100 per cent POD and OD fuel were used. Very promising results have been obtained. Neither the lower cetane number of POD fuel nor its emulsification with water presented any obstacle to the operation of a diesel engine during steady state engine tests and the 20 hour endurance tests. Polymerization and carbon deposits on fuel injector nozzles were monitored. Engine performance and fuel consumption for POD and its emulsions are comparable with those of OD fuel. Accumulations of wear metal debris in crank-case oil samples were lower with POD and emulsified fuels compared with baseline OD fuel. Both OD and POD emulsions with 10 per cent water by volume show a promising tendency for wear resistance. The exhaust emissions for POD and emulsified fuels are found to be much cleaner, containing less CO, CO2, HC, NOx, SOx and smoke level. Power output is slightly reduced when using POD and emulsified fuels.


Fuel ◽  
2010 ◽  
Vol 89 (2) ◽  
pp. 438-456 ◽  
Author(s):  
Octavio Armas ◽  
Kuen Yehliu ◽  
André L. Boehman

2018 ◽  
Vol 1 (1) ◽  
pp. 241-247 ◽  
Author(s):  
Adam Górniak ◽  
Katarzyna Midor ◽  
Jan Kaźmierczak ◽  
Wojciech Kaniak

Abstract The current problems related to air pollution in Europe, but also in Poland, are forcing the search for solutions aimed at significantly reducing the amount of solid particles harmful to humans in the air. Road transport is responsible for almost half of the pollution, as it releases nitrogen oxides into the air. In view of the above, the authors of the article want to turn attention toward methane as a fuel alternative traditional ones, pointing to the possibility of its use by Poland and presenting its advantages and disadvantages.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6569
Author(s):  
Monika Andrych-Zalewska ◽  
Zdzisław Chłopek ◽  
Jerzy Merkisz ◽  
Jacek Pielecha

The application of a catalyst on a surface inside a combustion chamber is known as a supplementary method of exhaust gas aftertreatment. The efficiency of this method in the reduction in exhaust emissions as well as its influence on other engine properties has been analyzed in multiple scientific works. Most often, these works present the results of investigations carried out on dynamometers under engine stationary conditions. There are no results of the catalyst investigations performed under dynamic states, particularly on-going real time analyses during engine operation. Therefore, the authors set out to explore the efficiency of the in-cylinder catalyst of a diesel engine under dynamic conditions simulating actual vehicle operation. A unique methodology was applied. The investigations were carried out in road conditions in a test simulating the New European Driving Cycle (NEDC) homologation test in compliance with the similarity criteria of the zero-dimensional characteristics of vehicle speed during the investigations and in the homologation test. For the research, the authors used portable exhaust emissions measurement equipment. A unique method of test results analysis was also applied (a continuous method in the time domain). As a result of the tests being repeated several times, it was observed that the application of an internal catalyst under different operating engine conditions repeatedly results in: an approx. 2% reduction in the emissions of carbon monoxide, hydrocarbons, and carbon dioxide; a similar increase in the emission of nitrogen oxides; and a significant (over 10%) reduction in the particle number. The obtained results substantiate the purpose of actions aiming at improving the efficiency of the internal catalyst.


2014 ◽  
Vol 13 (2) ◽  
pp. 09
Author(s):  
H. L. Rocha ◽  
N. R. Pinto ◽  
M. J. Colaço ◽  
A. J. K. Leiroz

This work analyses how ternary blends of biodiesel, anhydrous and hydrous ethanol, and diesel, in different proportions, behave regarding fuel emissions and combustion parameters. The determination of their cetane number, using an ASTM-CFR cetane research engine is also investigated. The base fuels used were 99,9% pure anhydrous ethanol, commercial diesel, which contains 5% of biodiesel in volume, biodiesel from soybean oil, and hydrous ethanol with 7% of water, in volume. The fuel blends werespecified after a careful bibliography research. Five volume fractions of biodiesel (5, 10, 20, 60 and 100%, in volume) and four of ethanol (0, 5, 8 and 15%, also in volume) were used in this study. All blends have endured a mixture stability test prior to being burned, the ones with clear visual phase separation being eventually rejected. The results for the cetane number presented a clear decrease in its value as ethanol was added. Some blends with high ethanol content failed to provide the minimum cetane number for use in compression ignition engines according to the present Brazilian regulations. Concerning the emissions tests, carbon dioxide emissions showed a decreasing trend as the quantity of added ethanol raised. Carbon monoxide emissions, however, showed the opposite trend. The nitrogen oxides emissions presented an increase as more biodiesel was added to the blend. The conclusions as to the impact of changing ethanol’s volume in the blends were discussed taking in consideration important operational remarks. A final analysis was proposed in order to compare anhydrous and hydrous ethanol. A clear reduction in nitrogen oxides and carbon dioxide emissions was observed, with an almost identical value for the carbon monoxide emissions. Cetane number for the hydrous ethanol blend, however, suffered a decrease compared to the same blend with anhydrous ethanol.


Author(s):  
H Masjuki ◽  
M Z Abdulmuin ◽  
H S Sii

The major drawback of vegetable oil fuels is their high viscosity. Various conventional approaches to reducing the viscosity of vegetable oils are studied theoretically and experimentally. An attempt to reduce the viscosity of the palm oil methyl esters (POME) by preheating the fuel was performed and a comparison on the basis of its projected chance of leading to ‘diesel-like’ combustion was also carried out with conventional diesel fuel. It was observed that by preheating the POME fuel above the conventional temperature, the engine performance, especially the brake power output and the exhaust emissions characteristics, is improved significantly, approaching diesellike' performance. This is mainly attributed to the fact that as the fuel is preheated the viscosity is reduced close to ordinary diesel (OD) fuel. This will result in improved spray and atomization characteristics. Torque, brake power, specific fuel consumption, exhaust emissions and brake thermal efficiencies were measured and calculated. The potential for improved engine performance and reduction in emissions levels was demonstrated.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4442
Author(s):  
Branko Lalić ◽  
Andrijana Poljak ◽  
Gojmir Radica ◽  
Antonija Mišura

Knowing the process of generating exhaust emissions and the determination of influential parameters are important factors in improving two-stroke slow-speed marine engines, particularly for further reductions in fuel consumption and stringent regulations on the limitation of nitrogen oxide emissions. In this article, a model of a marine low-speed two-stroke diesel engine has been developed. Experimental and numerical analyses of the nitrogen monoxide formations were carried out. When measuring the concentration of nitrogen oxides in the exhaust emissions, the amount of nitrogen dioxide (NO2) is usually measured, because nitrogen monoxide is very unstable, and due to the large amount of oxygen in the exhaust gases, it is rapidly converted into nitrogen dioxide and its amount is included in the total emission of nitrogen oxides. In this paper, the most significant parameters for the formation of nitrogen monoxide have been determined. Model validation was performed based on measured combustion pressures, engine power, and concentrations of nitrogen oxides at 50% and 75% of maximum continuous engine load. The possibilities of fuel consumption optimization and reduction in nitrogen monoxide emissions by correcting the injection timing and changing the compression ratio were examined. An engine model was developed, based on measured combustion pressures and scavenging air flow, to be used on board by marine engineers for rapid analyses and determining changes in the concentration of nitrogen oxides in exhaust emissions. The amount of nitrogen oxide in exhaust emissions is influenced by the relevant features described in this paper: fuel injection timing and engine compression ratio. The presented methodology provides a basis for further research about the simultaneous impact of changing the injection timing and compression ratio, exhaust valve opening and closing times, as well as the impact of multiple fuel injection to reduce consumption and maintain exhaust emissions within the permissible limits.


2016 ◽  
Vol 23 (3) ◽  
pp. 58-63 ◽  
Author(s):  
Dariusz Pietras

Abstract The article discusses the effect of fuel dose division in the Diesel engine on smoke opacity and composition of the emitted exhaust gas. The research activities reported in the article include experimental examination of a small Diesel engine with Common Rail type supply system. The tests were performed on the engine test bed equipped with an automatic data acquisition system which recorded all basic operating and control parameters of the engine, and smoke opacity and composition of the exhaust gas. The parameters measured during the engine tests also included the indicated pressure and the acoustic pressure. The tests were performed following the pre-established procedure in which 9 engine operation points were defined for three rotational speeds: 1500, 2500 and 3500 rpm, and three load levels: 25, 40 and 75 Nm. At each point, the measurements were performed for 7 different forms of fuel dose injection, which were: the undivided dose, the dose divided into two or three parts, and three different injection advance angles for the undivided dose and that divided into two parts. The discussion of the obtained results includes graphical presentation of contests of hydrocarbons, carbon oxide, and nitrogen oxides in the exhaust gas, and its smoke opacity. The presented analyses referred to two selected cases, out of nine examined engine operation points. In these cases the fuel dose was divided into three parts and injected at the factory set control parameters. The examination has revealed a significant effect of fuel dose division on the engine efficiency, and on the smoke opacity and composition of the exhaust gas, in particular the content of nitrogen oxides. Within the range of low loads and rotational speeds, dividing the fuel dose into three parts clearly improves the overall engine efficiency and significantly decreases the concentration of nitrogen oxides in the exhaust gas. Moreover, it slightly decreases the contents of hydrocarbons and carbon oxide. In the experiment the contents of nitrogen oxides markedly increased with the increasing injection advance angle for the undivided dose and that divided into two parts. This, in turn, led to the decrease of the contents of hydrocarbons and carbon oxide. Fuel dose division into two and three parts leads to the increase of smoke opacity of the exhaust gas, compared to the undivided dose.


Sign in / Sign up

Export Citation Format

Share Document