Indirect injection diesel engine operation on palm oil methyl esters and its emulsions

Author(s):  
H Masjuki ◽  
M Z Abdulmuin ◽  
H S Sii

Results of exhaust emissions and lube oil analysis of a diesel engine fuelled with Malaysian palm oil diesel (POD or palm oil methyl esters) and ordinary diesel (OD) emulsions containing 5 and 10 per cent of water by volume are compared with those obtained when 100 per cent POD and OD fuel were used. Very promising results have been obtained. Neither the lower cetane number of POD fuel nor its emulsification with water presented any obstacle to the operation of a diesel engine during steady state engine tests and the 20 hour endurance tests. Polymerization and carbon deposits on fuel injector nozzles were monitored. Engine performance and fuel consumption for POD and its emulsions are comparable with those of OD fuel. Accumulations of wear metal debris in crank-case oil samples were lower with POD and emulsified fuels compared with baseline OD fuel. Both OD and POD emulsions with 10 per cent water by volume show a promising tendency for wear resistance. The exhaust emissions for POD and emulsified fuels are found to be much cleaner, containing less CO, CO2, HC, NOx, SOx and smoke level. Power output is slightly reduced when using POD and emulsified fuels.

Author(s):  
H Masjuki ◽  
M Z Abdulmuin ◽  
H S Sii

The major drawback of vegetable oil fuels is their high viscosity. Various conventional approaches to reducing the viscosity of vegetable oils are studied theoretically and experimentally. An attempt to reduce the viscosity of the palm oil methyl esters (POME) by preheating the fuel was performed and a comparison on the basis of its projected chance of leading to ‘diesel-like’ combustion was also carried out with conventional diesel fuel. It was observed that by preheating the POME fuel above the conventional temperature, the engine performance, especially the brake power output and the exhaust emissions characteristics, is improved significantly, approaching diesellike' performance. This is mainly attributed to the fact that as the fuel is preheated the viscosity is reduced close to ordinary diesel (OD) fuel. This will result in improved spray and atomization characteristics. Torque, brake power, specific fuel consumption, exhaust emissions and brake thermal efficiencies were measured and calculated. The potential for improved engine performance and reduction in emissions levels was demonstrated.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2644 ◽  
Author(s):  
Norhidayah Mat Taib ◽  
Mohd Radzi Abu Mansor ◽  
Wan Mohd Faizal Wan Mahmood

Blending diesel with biofuels, such as ethanol and palm oil methyl ester (PME), enhances the fuel properties and produces improved engine performance and low emissions. However, the presence of ethanol, which has a small cetane number and low heating value, reduces the fuel ignitability. This work aimed to study the effect of injection strategies, compression ratio (CR), and air intake temperature (Ti) modification on blend ignitability, combustion characteristics, and emissions. Moreover, the best composition of diesel–ethanol–PME blends and engine modification was selected. A simulation was also conducted using Converge CFD software based on a single-cylinder direct injection compression ignition Yanmar TF90 engine parameter. Diesel–ethanol–PME blends that consist of 10% ethanol with 40% PME (D50E10B40), D50E25B25, and D50E40B10 were selected and conducted on different injection strategies, compression ratios, and intake temperatures. The results show that shortening the injection duration and increasing the injected mass has no significant effect on ignition. Meanwhile, advancing the injection timing improves the ignitability but with weak ignition energy. Therefore, increasing the compression ratio and ambient temperature helps ignite the non-combustible blends due to the high temperature and pressure. This modification allowed the mixture to ignite with a minimum CR of 20 and Ti of 350 K. Thus, blending high ethanol contents in a diesel engine can be applied by advancing the injection, increasing the CR, and increasing the ambient temperature. From the emission comparison, the most suitable mixtures that can be operated in the engine without modification is D50E25B25, and the most appropriate modification on the engine is by increasing the ambient temperature at 350 K.


2018 ◽  
Vol 11 (2) ◽  
pp. 74-78
Author(s):  
Obed M. Ali ◽  
Fattah H. Hasan ◽  
Abid Z. Khalaf

Diesel engine is widely used in the different applications of the modern life. Diesel fuel quality is an important indicator of the engine efficiency and exhaust emissions. However, the low cetane number of the commercial diesel resulting from improper refining processes lead to significant reduction in the engine efficiency. Hence, the aim of this study is to use diethyl ether to improve the fuel quality for better engine performance at lower engine emissions. Diethyl ether has been used at 5% percentage with commercial diesel, and the cetane number of the fuel was measured. Engine test was conducted at increasing speed to evaluate the engine performance and emissions. The study results show an improvement in the fuel cetane number from 49 to 51 with 5% diethyl ether. Furthermore, significant increase in engine power by about 10% has been recorded for the whole engine speed with slightly lower specific fuel consumption at low and medium engine speeds. Moreover, noticeable reduction in NOx emissions and CO emissions has been observed compared to commercial diesel. Therefore, it can be concluded that the utilization of diethyl ether as a fuel additive with commercial diesel can be considered for improving engine efficiency and control exhaust emissions.


2014 ◽  
Vol 660 ◽  
pp. 457-461 ◽  
Author(s):  
Amir Aziz ◽  
Wong Chung Siong ◽  
Rizalman Mamat ◽  
Ftwi Yohaness Hagos

An emulsion fuels is one of an alternative method that have been used to reduce exhaust emission from diesel engine. However, there were still not properly explored on the emulsified biodiesel. In this work, the effects of water concentration in palm oil diesel emulsions (POD) [POD is palm oil Methyl esters] on exhaust emissions of a 4-cylinder diesel engine were investigated. The engine speed was set at 2500 rpm and loads at 20, 40 and 60 %. Emulsions were prepared using ultrasound method by mixing POD fuel with 5, 10 and 20 % of water by volume. Results of exhaust emissions for POD and their emulsion were compared with OD fuel. The experimental results show that, the increasing water concentration in POD decrease the NOx and PM simultaneously. POD emulsions is a promising alternative fuels for reducing emissions from diesel engines without any engine modifications.


2019 ◽  
Vol 11 (8) ◽  
pp. 2188 ◽  
Author(s):  
Karol Tucki ◽  
Remigiusz Mruk ◽  
Olga Orynycz ◽  
Katarzyna Botwińska ◽  
Arkadiusz Gola ◽  
...  

Nowadays more and more emphasis is placed on the protection of the natural environment. Scientists notice that global warming is associated with an increase of carbon dioxide emissions, which results inter alia from the combustion of gasoline, oil, and coal. To reduce the problem of pollution from transport, the EU is introducing increasingly stringent emission standards which should correspond to sustainable conditions of the environment during the operation of motor vehicles. The emissivity value of substances, such as nitrogen oxides (NOx), hydrocarbons (HC), carbon monoxide (CO), as well as solid particles, was determined. The aim of this paper was to examine, by means of simulation in the Scilab program, the exhaust emissions generated by the 1.3 MultiJet Fiat Panda diesel engine, and in particular, carbon monoxide and nitrogen oxides (verified on the basis of laboratory tests). The Fiat Panda passenger car was selected for the test. The fuels supplied to the tested engine were diesel and FAME (fatty acid methyl esters). The Scilab program, which simulated the diesel engine operation, was the tool for analyzing the exhaust toxicity test. The combustion of biodiesel does not necessarily mean a smaller amount of exhaust emissions, as could be concluded on the basis of information contained in the subject literature. The obtained results were compared with the currently valid EURO-6 standard, for which the limit value for CO is 0.5 g/km, and for NOx − 0.08 g/km, and it can be seen that the emission of carbon monoxide did not exceed the standards in any case examined. Unfortunately, when analyzing the total emissions of nitrogen oxides, the situation was completely the opposite and the emissions were exceeded by 20–30%.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Iraklis Zahos-Siagos ◽  
Dimitrios Karonis

Hydroprocessing of liquid biomass is a promising technology for the production of “second generation” renewable fuels to be used in transportation. Its products, normal paraffins, can be further hydrotreated for isomerization in order to improve their cold flow properties. The final product, usually referred to as “paraffinic diesel,” is a high cetane number, clean burning biofuel which is rapidly gaining popularity among researchers and the industry. Nevertheless, the costly isomerization step can be omitted if normal paraffins are to be directly mixed with conventional diesel in low concentrations. In this work, nonisomerized paraffinic diesel produced through hydrotreating of used cooking oil (hydrotreated used cooking oil (HUCO)) has been used in 4 blends (up to 40% v/v) with conventional diesel fuel. The blends’ properties have been assessed comparatively to European EN 590 and EN 15940 standards (concerning conventional automotive diesel fuels and paraffinic diesel fuels from synthesis or hydrotreatment, resp.). Furthermore, the HUCO blends have been used in a standard stationary diesel engine-generator set. The blends have been considered as “drop-in replacements” for standard diesel fuel. As such, no engine modifications took place whatsoever. The engine performance and exhaust emissions of steady-state operation have been examined in comparison with engine operation with the baseline conventional diesel fuel.


2000 ◽  
Vol 2000.53 (0) ◽  
pp. 45-46
Author(s):  
Kazunori HAMASAKI ◽  
Takanobu OHSAKO ◽  
Yoshitomo MATSUO ◽  
Eiji KINOSHITA ◽  
Akio KAMEDA

2021 ◽  
Vol 18 (22) ◽  
pp. 451
Author(s):  
Ekkachai Sutheerasak ◽  
Charoen Chinwanitcharoen ◽  
Sathaporn Chuepeng

Biofuels are an alternative fuel currently being developed to reduce the diesel-engine environmental impact. The release of carbon dioxide (CO2), nitric oxide (NO) and black smoke (BS) becomes an issue derived from diesel engines even in lean-mixture combustion causing an adverse effect to human health. The main aim of the research study is to present the use of biofuels, a mixture of diesel and 10 % palm oil ethyl ester (PEE10) and PEE10 blended with bioethanol from 5 to 20 %, compared with conventional diesel fuel. The biofuels were run on a high-speed direct injection diesel engine at a constant speed of 3,000 rpm under various loads. The use of PEE10 resulted in brake thermal efficiency (BTE) reduction by 2 % and brake specific fuel consumption (BSFC) incrementation by 8 %, but the exhaust emissions were lower than diesel, except for CO2 and NO. However, PEE10 engine performance was better and exhaust gas emissions were lower for both pollutants than diesel mixed with 10 % bioethanol. The investigation of PEE10 with increasing bioethanol revealed that the use of PEE10 blended with 5 % bioethanol (PEE10E5) can improve engine performance, while the BTE and BSFC were close to that of diesel, and exhaust emissions, especially CO2, NO and BS reduced. Moreover, BTE from PEE10E5 fueling increased by 2 % but BSFC was subtle increased, compared to PEE10. On the other hand, the increasing bioethanol from 10 to 20 % in PEE10 led to the more reduction in engine performance, but the engine pollutants were also continuously decreased. Specifically, the blend of PEE10 and 20 % bioethanol indicates that CO2, NO and BS were reduced by 10, 15 and 33 %, respectively, compared to diesel fuel. HIGHLIGHTS A mixture of diesel and 10 % palm oil ethyl ester (PEE10) has less exhaust emissions than diesel blended with 10 % palm oil methyl ester (PME10) PEE10 blended with 5 % bioethanol can improve engine performance, while the brake thermal efficiency and brake specific fuel consumption are close to that of diesel and PME10 The increasing bioethanol from 10 to 20 % in PEE10 leads to the more reduction in engine performance, but the engine pollutants, especially carbon dioxide, nitric oxide and black smoke, are also continuously decreased GRAPHICAL ABSTRACT


Transport ◽  
2014 ◽  
Vol 29 (4) ◽  
pp. 440-448 ◽  
Author(s):  
Tomas Mickevičius ◽  
Stasys Slavinskas ◽  
Slawomir Wierzbicki ◽  
Kamil Duda

This paper presents a comparative analysis of the diesel engine performance and emission characteristics, when operating on diesel fuel and various diesel-biodiesel (B10, B20, B40, B60) blends, at various loads and engine speeds. The experimental tests were performed on a four-stroke, four-cylinder, direct injection, naturally aspirated, 60 kW diesel engine D-243. The in-cylinder pressure data was analysed to determine the ignition delay, the Heat Release Rate (HRR), maximum in-cylinder pressure and maximum pressure gradients. The influence of diesel-biodiesel blends on the Brake Specific Fuel Consumption (bsfc) and exhaust emissions was also investigated. The bench test results showed that when the engine running on blends B60 at full engine load and rated speed, the autoignition delay was 13.5% longer, in comparison with mineral diesel. Maximum cylinder pressure decreased about 1–2% when the amount of Rapeseed Methyl Ester (RME) expanded in the diesel fuel when operating at full load and 1400 min–1 speed. At rated mode, the minimum bsfc increased, when operating on biofuel blends compared to mineral diesel. The maximum brake thermal efficiency sustained at the levels from 0.3% to 6.5% lower in comparison with mineral diesel operating at full (100%) load. When the engine was running at maximum torque mode using diesel – RME fuel blends B10, B20, B40 and B60 the total emissions of nitrogen oxides decreased. At full and moderate load, the emission of carbon monoxide significantly raised as the amount of RME in fuel increased.


Sign in / Sign up

Export Citation Format

Share Document