Life-cycle environmental and economic benefits of jointless bridges considering climate change

Author(s):  
Chengcheng Shi ◽  
Yuanfeng Wang ◽  
Baochun Chen ◽  
Yinshan Liu ◽  
Kai Li ◽  
...  
Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1275 ◽  
Author(s):  
Ali Mohammadi ◽  
Benyamin Khoshnevisan ◽  
G. Venkatesh ◽  
Samieh Eskandari

Paddy fields emit considerable amounts of methane (CH4), which is a potent greenhouse gas (GHG) and, thereby, causes significant environmental impacts, even as they generate wealth and jobs directly in the agricultural sector, and indirectly in the food-processing sector. Application of biochar in rice production systems will not just help to truncate their carbon footprints, but also add to the bottom-line. In this work, the authors have reviewed the literature on climate change, human health, and economic impacts of using organic residues to make biochar for the addition to croplands especially to rice paddy fields. Biochar-bioenergy systems range in scale from small household cook-stoves to large industrial pyrolysis plants. Biochar can be purveyed in different forms—raw, mineral-enriched, or blended with compost. The review of published environmental life cycle assessment (E-LCA) studies showed biochar has the potential to mitigate the carbon footprint of farming systems through a range of mechanisms. The most important factors are the stabilization of the carbon in the biochar and the generation of recoverable energy from pyrolysis gases produced as co-products with biochar as well as decreased fertiliser requirement and enhanced crop productivity. The quantitative review of E-LCA studies concluded that the carbon footprint of rice produced in biochar-treated soil was estimated to range from −1.43 to 2.79 kg CO2-eq per kg rice grain, implying a significant reduction relative to rice produced without a biochar soil amendment. The suppression of soil-methane emission due to the biochar addition is the dominant process with a negative contribution of 40–70% in the climate change mitigation of rice production. The review of the life cycle cost studies on biochar use as an additive in farmlands demonstrated that biochar application can be an economically-feasible approach in some conditions. Strategies like the subsidization of the initial biochar capital cost and assignment of a non-trivial price for carbon abatement in future pricing mechanisms will enhance the economic benefits for the rice farmers.


2020 ◽  
pp. 161-165
Author(s):  
Bertram de Crom ◽  
Jasper Scholten ◽  
Janjoris van Diepen

To get more insight in the environmental performance of the Suiker Unie beet sugar, Blonk Consultants performed a comparative Life Cycle Assessment (LCA) study on beet sugar, cane sugar and glucose syrup. The system boundaries of the sugar life cycle are set from cradle to regional storage at the Dutch market. For this study 8 different scenarios were evaluated. The first scenario is the actual sugar production at Suiker Unie. Scenario 2 until 7 are different cane sugar scenarios (different countries of origin, surplus electricity production and pre-harvest burning of leaves are considered). Scenario 8 concerns the glucose syrup scenario. An important factor in the environmental impact of 1kg of sugar is the sugar yield per ha. Total sugar yield per ha differs from 9t/ha sugar for sugarcane to 15t/ha sugar for sugar beet (in 2017). Main conclusion is that the production of beet sugar at Suiker Unie has in general a lower impact on climate change, fine particulate matter, land use and water consumption, compared to cane sugar production (in Brazil and India) and glucose syrup. The impact of cane sugar production on climate change and water consumption is highly dependent on the country of origin, especially when land use change is taken into account. The environmental impact of sugar production is highly dependent on the co-production of bioenergy, both for beet and cane sugar.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 456
Author(s):  
Alexis Mooser ◽  
Giorgio Anfuso ◽  
Lluís Gómez-Pujol ◽  
Angela Rizzo ◽  
Allan T. Williams ◽  
...  

Coastal areas globally are facing a significant range of environmental stresses, enhanced by climate change-related processes and a continuous increase of human activities. The economic benefits of tourism are well-known for coastal regions, but, very often, conflicts arise between short-term benefits and long-term conservation goals. Among beach user preferences, five parameters of greater importance stand out from the rest, i.e., safety, facilities, water quality, litter and scenery; the latter is the main concern of this study. A coastal scenic evaluation was carried out in the Balearic Islands and focused on two major issues: coastal scenic beauty together with sensitivity to natural processes and human pressure. The archipelago is renowned as a top international coastal tourist destination that receives more than 13.5 million visitors (2019). Impressive landscape diversity makes the Balearics Islands an ideal field for this research. In total, 52 sites, respectively located in Ibiza (11), Formentera (5), Mallorca (18) and Menorca (18), were field-tested. In a first step, coastal scenic beauty was quantified using the coastal scenic evaluation system (CSES) method, based on the evaluation of 26 physical and human parameters, and using weighting matrices parameters and fuzzy logic mathematics. An evaluation index (“D”) was obtained for each site, allowing one to classify them in one of the five scenic classes established by the method. Twenty-nine sites were included in class I, corresponding to extremely attractive sites (CSES), which were mainly observed in Menorca. Several sound measures were proposed to maintain and/or enhance sites’ scenic value. In a second step, scenic sensitivity was evaluated using a novel methodological approach that makes possible the assessment of three different coastal scenic sensitivity indexes (CSSI), i.e., the natural sensitivity index NSI, the human sensitivity index HSI and the total sensitivity index TSI. Future climate change trends and projection of tourism development, studied at municipality scale, were considered as correction factors. All the islands showed places highly sensitive to environmental processes, while sensitivity to human pressure was essentially observed at Ibiza and Mallorca. Thereafter, sites were categorized into one of three sensitive groups established by the methodology. Results obtained are useful in pointing out very sensitive sceneries as well as limiting, preventing and/or anticipating future scenic degradation linked to natural and human issues.


Author(s):  
Daniel Felipe Rodriguez-Vallejo ◽  
Antonio Valente ◽  
Gonzalo Guillén-Gosálbez ◽  
Benoit Chachuat

Reducing the contribution of the transport sector to climate change calls for a transition towards renewable fuels. Polyoxymethylene dimethyl ethers (OMEn) constitute a promising alternative to fossil-based diesel. This article...


Author(s):  
A. Marcos ◽  
D. Trigo ◽  
A.B. Muñiz-González ◽  
N. Tilikj ◽  
J.L. Martínez-Guitarte ◽  
...  

Author(s):  
Arja Rautio ◽  
Natalia Kukarenko ◽  
Lena Maria Nilsson ◽  
Birgitta Evengard

Climate change in the Arctic affects both environmental, animal, and human health, as well as human wellbeing and societal development. Women and men, and girls and boys are affected differently. Sex-disaggregated data collection is increasingly carried out as a routine in human health research and in healthcare analysis. This study involved a literature review and used a case study design to analyze gender differences in the roles and responsibilities of men and women residing in the Arctic. The theoretical background for gender-analysis is here described together with examples from the Russian Arctic and a literature search. We conclude that a broader gender-analysis of sex-disaggregated data followed by actions is a question of human rights and also of economic benefits for societies at large and of the quality of services as in the health care.


Author(s):  
Toon Haer ◽  
W. J. Wouter Botzen ◽  
Vincent van Roomen ◽  
Harry Connor ◽  
Jorge Zavala-Hidalgo ◽  
...  

Many countries around the world face increasing impacts from flooding due to socio-economic development in flood-prone areas, which may be enhanced in intensity and frequency as a result of climate change. With increasing flood risk, it is becoming more important to be able to assess the costs and benefits of adaptation strategies. To guide the design of such strategies, policy makers need tools to prioritize where adaptation is needed and how much adaptation funds are required. In this country-scale study, we show how flood risk analyses can be used in cost–benefit analyses to prioritize investments in flood adaptation strategies in Mexico under future climate scenarios. Moreover, given the often limited availability of detailed local data for such analyses, we show how state-of-the-art global data and flood risk assessment models can be applied for a detailed assessment of optimal flood-protection strategies. Our results show that especially states along the Gulf of Mexico have considerable economic benefits from investments in adaptation that limit risks from both river and coastal floods, and that increased flood-protection standards are economically beneficial for many Mexican states. We discuss the sensitivity of our results to modelling uncertainties, the transferability of our modelling approach and policy implications. This article is part of the theme issue ‘Advances in risk assessment for climate change adaptation policy’.


Author(s):  
Luca Capacci ◽  
Fabio Biondini

<p>This paper investigates the life-cycle seismic resilience of aging road networks with reinforced concrete (RC) bridges under the effects of climate change. The physical damage suffered by the exposed bridges is related to traffic limitations implemented over the network. A probabilistic framework is proposed to aggregate the time-variant seismic capacity assessment of RC structures exposed to chloride-induced corrosion with the traffic response of the transportation network. The life-cycle seismic resilience of a simple road network is evaluated based on the restoration of the network functionality guaranteed by the post-event recovery of the damaged bridge. The results highlight the detrimental effects of the progressive increase in the deterioration rate induced by climate change, impairing the seismic capacity of single bridges and, in turn, the seismic resilience of the overall transportation system.</p>


Sign in / Sign up

Export Citation Format

Share Document