scholarly journals Finite elements-based 2D theoretical analysis of the effect of IEX membrane thickness and salt solution residence time on the ion transport within a salinity gradient power reverse electrodialysis half cell pair

2013 ◽  
Vol 51 (34-36) ◽  
pp. 6429-6443 ◽  
Author(s):  
Etienne Brauns
RSC Advances ◽  
2014 ◽  
Vol 4 (80) ◽  
pp. 42617-42623 ◽  
Author(s):  
Ramato Ashu Tufa ◽  
Efrem Curcio ◽  
Willem van Baak ◽  
Joost Veerman ◽  
Simon Grasman ◽  
...  

Salinity Gradient Power-Reverse Electrodialysis (SGP-RE), tested on brackish water/solar pond brine, resulted in maximum power density of 1.13 W m−2 cell pair, 63% less than that of pure NaCl solutions with comparable salinity.


2016 ◽  
Vol 42 ◽  
pp. 1660183 ◽  
Author(s):  
CHE-RONG CHANG ◽  
CHING-HUA YEH ◽  
HUNG-CHUN YEH ◽  
RUEY-JEN YANG

When a concentrated salt solution and a diluted salt solution are separated by an ion-selective membrane, cations and anions would diffuse at different rates depending on the ion selectivity of the membrane. The difference of positive and negative charges at both ends of the membrane would produce a potential, called the diffusion potential. Thus, electrical energy can be converted from the diffusion potential through reverse electrodialysis. This study demonstrated the fabrication of an energy conversion microchip using the standard micro-electromechanical technique, and utilizing Nafion junction as connecting membrane, which was fabricated by a surface patterned process. Through different salinity gradient of potassium chloride solutions, we experimentally investigated the diffusion potential and power generation from the microchip, and the highest value measured was 135 mV and 339 pW, respectively. Furthermore, when the electrolyte was in pH value of 3.8, 5.6, 10.3, the system exhibited best performance at pH value of 10.3; whereas, pH value of 3.8 yielded the worst.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 135
Author(s):  
Yash Dharmendra Raka ◽  
Robert Bock ◽  
Håvard Karoliussen ◽  
Øivind Wilhelmsen ◽  
Odne Stokke Burheim

The ohmic resistances of the anion and cation ion-exchange membranes (IEMs) that constitute a reverse electrodialysis system (RED) are of crucial importance for its performance. In this work, we study the influence of concentration (0.1 M, 0.5 M, 1 M and 2 M) of ammonium bicarbonate solutions on the ohmic resistances of ten commercial IEMs. We also studied the ohmic resistance at elevated temperature 313 K. Measurements have been performed with a direct two-electrode electrochemical impedance spectroscopy (EIS) method. As the ohmic resistance of the IEMs depends linearly on the membrane thickness, we measured the impedance for three different layered thicknesses, and the results were normalised. To gauge the role of the membrane resistances in the use of RED for production of hydrogen by use of waste heat, we used a thermodynamic and an economic model to study the impact of the ohmic resistance of the IEMs on hydrogen production rate, waste heat required, thermochemical conversion efficiency and the levelised cost of hydrogen. The highest performance was achieved with a stack made of FAS30 and CSO Type IEMs, producing hydrogen at 8.48× 10−7 kg mmem−2s−1 with a waste heat requirement of 344 kWh kg−1 hydrogen. This yielded an operating efficiency of 9.7% and a levelised cost of 7.80 € kgH2−1.


DYNA ◽  
2019 ◽  
Vol 86 (211) ◽  
pp. 241-248
Author(s):  
Francisco Fernando Garcia Renteria ◽  
Mariela Patricia Gonzalez Chirino

In order to study the effects of dredging on the residence time of the water in Buenaventura Bay, a 2D finite elements hydrodynamic model was coupled with a particle tracking model. After calibrating and validating the hydrodynamic model, two scenarios that represented the bathymetric changes generated by the dredging process were simulated. The results of the comparison of the simulated scenarios, showed an important reduction in the velocities fields that allow an increase of the residence time up to 12 days in some areas of the bay. In the scenario without dredging, that is, with original bathymetry, residence times of up to 89 days were found.


Author(s):  
Chen-Wei Chang ◽  
Chien-Wei Chu ◽  
Yen-Shao Su ◽  
Li-Hsien Yeh

Capturing osmotic energy from a salinity gradient through an ion-selective membrane is regarded as one of the renewable clean energy resources to solve the increasing global energy demands. However, suffering...


2018 ◽  
Vol 20 (10) ◽  
pp. 7295-7302 ◽  
Author(s):  
Rui Long ◽  
Zhengfei Kuang ◽  
Zhichun Liu ◽  
Wei Liu

To evaluate the possibility of nano-fluidic reverse electrodialysis (RED) for salinity gradient energy harvesting, we consider the behavior of ion transportation in a bilayer cylindrical nanochannel with different sized nanopores connecting two reservoirs at different NaCl concentrations.


Sign in / Sign up

Export Citation Format

Share Document