UV/persulfate and UV/hydrogen peroxide processes for the treatment of salicylic acid: effect of operating parameters, kinetic, and energy consumption

Author(s):  
J. Saien ◽  
M. Osali ◽  
A.R. Soleymani
Author(s):  
Diana Rocio Ruiz-Sáenz ◽  
Humberto Antonio López-Delgado ◽  
Diana Daniela Ayala Hernández ◽  
Carlos Trejo ◽  
Martha Elena Mora-Herrera ◽  
...  

Author(s):  
KM Diksha Singh ◽  
Vikram Singh ◽  
Adity Singh ◽  
Vipin Kesharwani

Background: Oxidative stress is imbalance between aggressive and defensive system. Overproduction of oxidative stress contribute in pathogenesis of many diseasesincluding Parkinsonism, Alzheimer diseases, apoptosis, hepatic fibrosis ,chronic kidney failure and liver steatosis etc . There are several OTC drugs including NSAIDs that generate oxidative stress when administered. So there is a need to explore about these drugs. Therefore this study was designed to evaluate the oxidative stress potential of Acetaminophen, acetyl salicylic acid and Celecoxib NSAIDs. Objective: The present study is design to investigate the oxidative stress of NSAIDs of acetaminophen, aspirin and Celecoxib drug with reference to the hydrogen peroxide. Material and method: The Experimental protocol was designed for estimate the level of oxidative stress in NSAIDs treated animals against hydrogen peroxides. Animal of control group received only vehicle throughout experimental protocol. Rats of AAP group, ASA group ,CX group were exposed to acetaminophen (150mg/kg; orally) acetyl salicylic acid (300mg/kg ;orally) and Celecoxib (50mg/kg; orally) for forty two days . Rodent of HP group were challenged with Hydrogen peroxides (0.5%) with same schedule as above. At end of experimental protocols, all the animals were sacrificed and their organ were identified and collected for oxidative stress estimation and histological examination. Result: NSAIDs administration caused increase in oxidative stress measured in terms of SOD, CAT, MDA, GSH and GPx. HP administration produced maximum oxidative stress compare to all other groups. Oxidative parameter i.e. SOD, CAT, GSH and GPx were found to be decreased as compare to control rats. However MDA were found to be increased as compare to control rats. Additionally, CX produced less oxidative stress compare to other NDAIDs. Further, histological examinations support the biochemical results. Conclusion: From the above observations it can be concluded that NSAIDs have oxidative stress potential and generate oxidative stress and damage the organs when administrated chronically. Thus, these drugs should be used judiciously.


2002 ◽  
Vol 46 (4-5) ◽  
pp. 51-58 ◽  
Author(s):  
N.H. Ince ◽  
D.A. Hasan ◽  
B. Üstün ◽  
G. Tezcanli

Treatability of textile dyebath effluents by two simultaneously operated processes comprising adsorption and advanced oxidation was investigated using a reactive dyestuff, Everzol Black-GSP® (EBG). The method was comprised of contacting aqueous solutions of the dye with hydrogen peroxide and granules of activated carbon (GAC) during irradiation of the reactor with ultraviolet light (UV). Control experiments were run separately with each individual process (advanced oxidation with UV/H2O2 and adsorption on GAC) to select the operating parameters on the basis of maximum color removal. The effectiveness of the combined scheme was tested by monitoring the rate of decolorization and the degree of carbon mineralization in effluent samples. It was found that in a combined medium of advanced oxidation and adsorption, color was principally removed by oxidative degradation, while adsorption contributed to the longer process of dye mineralization. Economic evaluation of the system based on total color removal and 50% mineralization showed that in the case of Everzol Black-GSP®, which adsorbs relatively poorly on GAC, the proposed combination provides 25% and 35% reduction in hydrogen peroxide and energy consumption relative to the UV/H2O2 system. Higher cost reductions are expected in cases with well adsorbing dyes and/or with less costly adsorbents.


2015 ◽  
Vol 44 (2) ◽  
pp. 87-93 ◽  
Author(s):  
Sridhara Reddy ◽  
Maheswar Dutta ◽  
K.Vijaya Kumar Reddy

Compression ratios of the engine considerably affect the performance and emission behavior of an engine.The paper discusses about effect of compression ratios on the operating parameters such as brake specific fuelconsumption (BSFC), brake specific energy consumption (BSEC), brake thermal efficiency (BTE) and volumetricefficiency on a stationary diesel-CNG dual fuel engine by adding hydrogen fraction as a combustion booster. Theexhaust emission behavior of the engine is also presented. Addition of hydrogen in CNG has given better resultsthan diesel-CNG dual fuel operation of the engine. The volumetric efficiency and emissions like NOx are theparameters which needed attention towards this study. The paper presents experimental results and analyzes them.


2012 ◽  
Vol 164 ◽  
pp. 263-267 ◽  
Author(s):  
Rui Jie Jin ◽  
Chang Sheng Peng ◽  
Ahmed Abou-Shady ◽  
Ke Dong Zhang

The recovery of Ni2+ from nickel containing solution is a worthwhile work, owing to its precious value. In the present work, the optimal values of electrolysis (EL) operating parameters were elaborately investigated using Taguchi approach. The effect of Ni2+ initial concentration, boric acid, pH, and voltage were investigated in terms of nickel recovery and energy consumption. The results obtained showed that the influential factors on nickel recovery were voltage > boric acid > pH > concentration. However, in terms of energy consumption the following order of concentration > boric acid > pH > voltage was obtained. A confirmation experiment was carried out with the optimized parameters (boric acid 18g/L, nickel concentration 1000 mg/L, voltage applied 4.0 V, and pH 4). The recovery of Ni2+ yielded about 88%, and the outlet Ni2+ was as low as 119 mg/L. The electrolysis dynamic mode was investagated with flow rate 20 mL/min. The results showed that the outlet nickel concentration was 350 mg/L equal to 65% of Ni2+ recovery and energy consumption of 25.7 kW h/kg. Electrolysis could effectively recover nickel, however the Ni2+ concentration of the residual electrolyte was much higher than the restriction of 1 mg/L, so we used electrodialysis to further treat the residual electrolyte and the nickel concentration has been reduced below 1 mg/L , which will be discussed in other paper.


Author(s):  
H. Li ◽  
J. Yan

Oxy-fuel combustion is one of promising technologies for CO2 capture, which uses simple flue gas processing normally including compression, dehydration and purification/liquefaction (non-condensable gas separation). However relatively high levels of impurities in the flu gas present more challenges for the gas processing procedure. This paper studied the sensitivity of operating parameters to inlet composition, the effects of impurities on energy consumption, and the relationship between energy consumption and operating parameters. Results show that comparatively the total compression work is more sensitive to the composition of SO2 if the total mass flow is constant; while the operating temperature of purification is more sensitive to N2. To pursue the minimum energy consumption, from the viewpoint of impurity, the content of O2, N2, Ar and H2O should be lowered as much as possible, which means the amount of air leakage into the system and excess oxygen should be controlled at a low level in the combustion; as to SO2, if it is possible to co-deposit with CO2, its existence may be helpful to decrease compression work. From the viewpoint of operating parameters, low intermediate pressure, high intercooling temperature and high outlet pressure are favorable to achieve high energy utilization, if heat recovery is considered.


Sign in / Sign up

Export Citation Format

Share Document