scholarly journals Effective thermal conductivity of 3D-printed continuous fiber polymer composites

2020 ◽  
Vol 6 (1) ◽  
pp. 17-28
Author(s):  
Yehia Ibrahim ◽  
Ahmed Elkholy ◽  
Jonathon S. Schofield ◽  
Garrett W. Melenka ◽  
Roger Kempers
2018 ◽  
Vol 54 (1) ◽  
pp. 356-369 ◽  
Author(s):  
Siping Zhai ◽  
Ping Zhang ◽  
Yaoqi Xian ◽  
Peng Yuan ◽  
Daoguo Yang

Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1369 ◽  
Author(s):  
Yueke Ming ◽  
Yugang Duan ◽  
Ben Wang ◽  
Hong Xiao ◽  
Xiaohui Zhang

Recently, 3D printing of fiber-reinforced composites has gained significant research attention. However, commercial utilization is limited by the low fiber content and poor fiber–resin interface. Herein, a novel 3D printing process to fabricate continuous fiber-reinforced thermosetting polymer composites (CFRTPCs) is proposed. In brief, the proposed process is based on the viscosity–temperature characteristics of the thermosetting epoxy resin (E-20). First, the desired 3D printing filament was prepared by impregnating a 3K carbon fiber with a thermosetting matrix at 130 °C. The adhesion and support required during printing were then provided by melting the resin into a viscous state in the heating head and rapidly cooling after pulling out from the printing nozzle. Finally, a powder compression post-curing method was used to accomplish the cross-linking reaction and shape preservation. Furthermore, the 3D-printed CFRTPCs exhibited a tensile strength and tensile modulus of 1476.11 MPa and 100.28 GPa, respectively, a flexural strength and flexural modulus of 858.05 MPa and 71.95 GPa, respectively, and an interlaminar shear strength of 48.75 MPa. Owing to its high performance and low concentration of defects, the proposed printing technique shows promise in further utilization and industrialization of 3D printing for different applications.


Author(s):  
Kabeer Raza ◽  
Syed Sohail Akhtar ◽  
Abul Fazal M. Arif ◽  
Abbas Saeed Hakeem

Abstract Most of the predictive models for thermal conductivity of composites are derived based on the assumption that the filler concentration in the matrix is dilute. This assumption leads to inaccurate predictions when filler concentration is essentially non-dilute and hence there is a need to propose a model that could handle a non-dilute filler concentration. In this work an improved and realistic model for effective thermal conductivity of polymer matrix composites with non-dilute filler’s concentrations is derived and validated by experiments. The proposed model can handle fillers with variable size and shapes. The derivation is based on the Bruggeman’s differential effective medium theory where the high volume fractions can be obtained by incrementally adding ‘small volume fractions’ into the ‘existing composite’ at each stage. The proposed model is validated by experimentally produced different series of ceramic particles-polymer composites. Differently sized and shaped alumina (Al2O3) & aluminum nitride (AlN) particulate fillers, and high density polyethylene (HDPE) & polypropylene (PP) matrices were used as the variable ingredients. Using different combinations of filler, matrix and particle size six different series of composites were produced with variable filler concentrations up to 50% by volume. The microstructure of the produced samples was studied by field emission scanning electron microscope to relate the morphology with the predictions. The predictions of proposed model are found in close agreement with the measured thermal conductivities. To understand the detailed effects of different parameters, parametric studies are presented and discussed. It is found that aspect ratio of particulate fillers is the most sensitive parameter to enhance effective thermal conductivity. Overall, the proposed model is proven to be useful in composite material design for heat transfer applications. It is expected that the proposed model will open new doors for the researchers and polymer composite industry to develop new composite designs for achieving ultrahigh thermal conductivities.


Sign in / Sign up

Export Citation Format

Share Document