The Role of Myofibroblasts and Interstitial Fibrosis in the Progression of Membranous Nephropathy

Renal Failure ◽  
2004 ◽  
Vol 26 (4) ◽  
pp. 445-451 ◽  
Author(s):  
Keyla B. F. Rocha ◽  
Vitor A. Soares ◽  
Rosa M. Viero
2018 ◽  
Vol 315 (6) ◽  
pp. F1822-F1832 ◽  
Author(s):  
Zhengwei Ma ◽  
Qingqing Wei ◽  
Ming Zhang ◽  
Jian-Kang Chen ◽  
Zheng Dong

Renal fibrosis is a common pathological feature in chronic kidney disease (CKD), including diabetic kidney disease (DKD) and obstructive nephropathy. Multiple microRNAs have been implicated in the pathogenesis of both DKD and obstructive nephropathy, although the overall role of microRNAs in tubular injury and renal fibrosis in CKD is unclear. Dicer (a key RNase III enzyme for microRNA biogenesis) was specifically ablated from kidney proximal tubules in mice via the Cre-lox system to deplete micoRNAs. Proximal tubular Dicer knockout (PT- Dicer KO) mice and wild-type (WT) littermates were subjected to streptozotocin (STZ) treatment to induce DKD or unilateral ureteral obstruction (UUO) to induce obstructive nephropathy. Renal hypertrophy, renal tubular apoptosis, kidney inflammation, and tubulointerstitial fibrosis were examined. Compared with WT mice, PT- Dicer KO mice showed more severe tubular injury and renal inflammation following STZ treatment. These mice also developed higher levels of tubolointerstitial fibrosis. Meanwhile, PT- Dicer KO mice had a significantly higher Smad2/3 expression in kidneys than WT mice (at 6 mo of age) in both control and STZ-treated mice. Similarly, UUO induced more severe renal injury, inflammation, and interstitial fibrosis in PT- Dicer KO mice than WT. Although we did not detect obvious Smad2/3 expression in sham-operated mice (2–3 mo old), significantly more Smad2/3 was induced in obstructed PT- Dicer KO kidneys. These results supported a protective role of Dicer-dependent microRNA synthesis in renal injury and fibrosis development in CKD, specifically in DKD and obstructive nephropathy. Depletion of Dicer and microRNAs may upregulate Smad2/3-related signaling pathway to enhance the progression of CKD.


2021 ◽  
Vol 10 (2) ◽  
pp. 134-138
Author(s):  
Dhafer Ahmed Alshehri ◽  
Haifa Mansour Alturki ◽  
Faisal Theeb Al-Qahtani ◽  
Abdulrauf Abdulatif A Tashkandi ◽  
Qamar Adel Fallatah ◽  
...  

2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Keyvan Yousefi ◽  
Wen Ding ◽  
Lina A Shehadeh

HFpEF is an increasingly prevalent syndrome associated with impaired myocardial energetics, for which no etiologic therapy is available. Osteopontin (OPN) is a matricellular protein that is upregulated in the circulation of HFpEF patients, and reported to induce mitochondrial stress in rodent cardiomyocytes. Here we evaluate the role of circulating OPN in regulating myocardial function in the nephrotic Col4a3 -/- mouse model of HFpEF. We performed extensive cardiac, biochemical and mitochondrial analyses of the Col4a3 -/- mouse and found a striking HFpEF phenotype. We showed OPN levels were elevated in Col4a3 -/- mice (FC=2.1, n=6; p<.01). Col4a3 -/- mice were hypertensive, had diastolic dysfunction, myocyte hypertrophy and interstitial fibrosis - all of which were ameliorated in Col4a3 -/- OPN -/- mice (n=5-20; p<.05). Col4a3 -/- hearts had dysmorphic mitochondria (EM), lowered antioxidant capacity as a 50% reduction in GSH/GSSG ratio (n=6; p<.05) and lower protein levels of mitochondrial respiratory complexes I, II and IV (p<.05). Flux assay in adult cardiomyocytes showed that maximal respiration was reduced in Col4a3 -/- hearts (575.84±37.6 vs 322.34±25.48 pmol/min in WT, n=9; p<.0001). Microarray data (validated by mitochondrial blot) implicated OGDHL as decreased in Col4a3 -/- hearts but increased in double knockout Col4a3 -/- OPN -/- hearts compared to WT (n=3; p<.05). OGDH activity was also lower in Col4a3 -/- hearts (17.1±7.3 vs 2.5±1.1 mU/mg in WT; n=6; p<.05). In Col4a3 -/- mice, heart-specific AAV9-mediated overexpression of OGDHL, similar to global OPN KO, improved survival by ~50-100% (p<.0001). Isovolumetric relaxation time, a marker of diastolic dysfunction, which is prolonged in Col4a3 -/- mice (26.17 vs 15.30±1 ms, n=26; p<.001) was decreased in Col4a3 -/- OPN -/- mice (18.1±1 ms, n=37; p<.01) as well as in AAV9-cTnT-OGDHL-treated Col4a3 -/- mice (16.7±2.5 ms, n=8; p<.05). In conclusion, we present a new mouse model for HFpEF in which diastolic function and lifespan can be improved by genetic deletion of OPN or cardiac OGDHL gene therapy. Our results elucidate for the first time the pivotal roles of circulating OPN and cardiac OGDHL in HFpEF pathophysiology and present two related potential therapeutic targets for HFpEF.


2010 ◽  
Vol 134 (3) ◽  
pp. 462-480 ◽  
Author(s):  
Victor L. Roggli ◽  
Allen R. Gibbs ◽  
Richard Attanoos ◽  
Andrew Churg ◽  
Helmut Popper ◽  
...  

Abstract Asbestosis is defined as diffuse pulmonary fibrosis caused by the inhalation of excessive amounts of asbestos fibers. Pathologically, both pulmonary fibrosis of a particular pattern and evidence of excess asbestos in the lungs must be present. Clinically, the disease usually progresses slowly, with a typical latent period of more than 20 years from first exposure to onset of symptoms. Differential Diagnosis: Idiopathic Pulmonary Fibrosis The pulmonary fibrosis of asbestosis is interstitial and has a basal subpleural distribution, similar to that seen in idiopathic pulmonary fibrosis, which is the principal differential diagnosis. However, there are differences between the 2 diseases apart from the presence or absence of asbestos. First, the interstitial fibrosis of asbestosis is accompanied by very little inflammation, which, although not marked, is better developed in idiopathic pulmonary fibrosis. Second, in keeping with the slow tempo of the disease, the fibroblastic foci that characterize idiopathic pulmonary fibrosis are infrequent in asbestosis. Third, asbestosis is almost always accompanied by mild fibrosis of the visceral pleura, a feature that is rare in idiopathic pulmonary fibrosis. Differential Diagnosis: Respiratory Bronchiolitis Asbestosis is believed to start in the region of the respiratory bronchiole and gradually extends outward to involve more and more of the lung acinus, until the separate foci of fibrosis link, resulting in the characteristically diffuse pattern of the disease. These early stages of the disease are diagnostically problematic because similar centriacinar fibrosis is often seen in cigarette smokers and is characteristic of mixed-dust pneumoconiosis. Fibrosis limited to the walls of the bronchioles does not represent asbestosis. Role of Asbestos Bodies Histologic evidence of asbestos inhalation is provided by the identification of asbestos bodies either lying freely in the air spaces or embedded in the interstitial fibrosis. Asbestos bodies are distinguished from other ferruginous bodies by their thin, transparent core. Two or more asbestos bodies per square centimeter of a 5-μm-thick lung section, in combination with interstitial fibrosis of the appropriate pattern, are indicative of asbestosis. Fewer asbestos bodies do not necessarily exclude a diagnosis of asbestosis, but evidence of excess asbestos would then require quantitative studies performed on lung digests. Role of Fiber Analysis Quantification of asbestos load may be performed on lung digests or bronchoalveolar lavage material, employing either light microscopy, scanning electron microscopy, or transmission electron microscopy. Whichever technique is employed, the results are only dependable if the laboratory is well practiced in the method chosen, frequently performs such analyses, and the results are compared with those obtained by the same laboratory applying the same technique to a control population.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Jorge E Massare ◽  
R. Haris Naseem ◽  
Jeff M Berry ◽  
Farhana Rob ◽  
Joseph A Hill

Background: Sudden cardiac death due to ventricular tachyarrhythmia (VT) accounts for a large number of deaths in patients with heart failure. Several cellular events which occur during pathological remodeling of the failing ventricle are implicated in the genesis of VT, including action potential prolongation, dysregulation of intercellular coupling, and fibrosis. Interestingly, transgenic mice over-expressing constitutively active PKD (caPKD) develop severe heart failure without interstitial fibrosis, an otherwise prominent feature of the disease. The goal here was to define the role of interstitial fibrosis in the proarrhythmic phenotype of failing myocardium. Methods and Results: We performed echocardiographic, electrocardiographic, and in vivo electrophysiologic studies in 8 –10 week old caPKD mice (n=12). Similar studies were performed in mice with load-induced heart failure induced by surgical pressure overload (sTAB, n=10), a model of heart failure with prominent interstitial fibrosis. caPKD and sTAB mice showed similar degrees of ventricular dilation (LV systolic dimension caPKD 2.4±0.8 mm vs 3.0±0.9 sTAB, p=0.18) and severe systolic dysfunction (% fractional shortening caPKD 25±11 vs 28±11 sTAB, p=0.62). Yet, caPKD mice showed minimal interstitial fibrosis, comparable to unoperated controls. With the exception of ventricular refractory period, which was higher in caPKD (48±11 msec vs 36±7 TAB and 40±8 WT, p<0.05), other electrocardiographic and electrophysiologic variables were similar among the 3 groups (p=NS), including heart rate, QT duration, and mean VT threshold. As expected, VT (≥3beats) was readily inducible by programmed stimulation in sTAB mice (7/10). By contrast, VT was less inducible in caPKD mice (4/12; p=0.1 vs TAB and <0.05 vs WT), and uninducible in unoperated controls (0/12). VT was polymorphic in both models, but episodes of VT were both slower (VT cycle length caPKD 58±4.0 msec vs 48±1 sTAB, p=0.016) and longer in caPKD mice (caPKD 1.8±0.7 sec vs 0.47±0.3 sTAB, p=0.038). Conclusion: Interstitial fibrosis contributes to the inducibility, maintenance, and rate of VT in heart failure. These findings highlight the importance of anti-remodeling therapies known to target fibrosis in heart disease.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Joelle Trepanier ◽  
Dharmendra D Dingar ◽  
Marc-Antoine Gillis ◽  
Pramod Sahadevan ◽  
Yan Fen Shi ◽  
...  

Cardiac hypertrophy, a common consequence of cardiopathologies such as hypertension and myocardial infarcts, involves formation of excessive interstitial fibrosis, which may impair cardiac function. Fibroblasts are the primary source of extracellular matrix protein. Extracellular-regulated kinase 4 (ERK4) is an atypical mitogen-activated protein kinase (MAPK). The regulation and role of ERK4 in the heart are currently unidentified and its only known target is MAP kinase-activated protein kinase 5 (MK5), a kinase involved in regulating fibroblast function. Following constriction of the transverse aorta (TAC), MK5 haplodeficient mice showed an attenuation of the TAC-induced increase in collagen 1-α 1 mRNA at 2-wk post-TAC and reduced hypertrophy 8-wk post-TAC. Further studies revealed MK5 immunoreactivity in cardiac fibroblasts but not myocytes. MK5 immunoprecipitates from whole heart contain ERK3 immunoreactivity, but not that of ERK4 or p38 MAPK. This study was to examine the role of ERK4 in myocardial structure, function, and remodeling 3-wk post-TAC. At 12 wk of age, echocardiographic imaging revealed systolic and diastolic function in male ERK4 -/- mice were similar to wild-type littermates (ERK4 +/+ ). Three weeks post-TAC, hypertrophy was similar in ERK4 +/+ and ERK4 -/- mice. Transcripts for BNP and βMHC increased to similar extent in TAC- ERK4 +/+ and TAC- ERK4 -/- mice. Two-way ANOVA indicated that ERK4 deficiency altered the effect of TAC on TGFβ 1 and collagen 1-α 1 transcript levels with each being higher in TAC-ERK4 -/- mice. Furthermore, MK5 immunoprecipitates from cardiac fibroblast lysates did not contain ERK4 immunoreactivity. Additional experiments revealed the presence of ERK4 immunoreactivity in myocytes but not fibroblasts. These results suggest 1) ERK4 may be involved in myocyte - fibroblast communication during myocardial remodeling and 2) in cardiac myocytes, ERK4 is part of a novel signaling cascade that does not involve MK5.


Sign in / Sign up

Export Citation Format

Share Document