scholarly journals Reciprocal transmembranous receptor-cytoskeleton interactions in concanavalin A-activated platelets.

1985 ◽  
Vol 101 (3) ◽  
pp. 993-1000 ◽  
Author(s):  
M E Wheeler ◽  
J M Gerrard ◽  
R C Carroll

Concanavalin A (Con A) has been used to activate platelets, inducing a specific interaction between the glycoprotein IIb-IIIa complex and the cytoskeleton of the activated platelet. In agreement with this, we have shown that Con A activates human platelets, initiating phosphorylation, secretion, and cytoskeletal formation. Con A and cytochalasin B were used to demonstrate a reciprocal interaction of the glycoprotein complex with the platelet cytoskeleton. Additionally, we have shown that a similar reciprocity is provided by the multivalent fibrin-fibrinogen platelet interaction found in the thrombin-induced clot. Con A differs from other activators in precipitating an apparent cytoskeletal core despite a complete inhibition of platelet activation by prostaglandin E1. We suggest, from this result, that Con A may be cross-linking a membrane-associated cytoskeletal complex present in the unactivated platelet.

1974 ◽  
Vol 62 (2) ◽  
pp. 351-365 ◽  
Author(s):  
Graeme B. Ryan ◽  
Joan Z. Borysenko ◽  
Morris J. Karnovsky

Human neutrophil polymorphonuclear leukocytes (PMN) were studied to determine the influence of cellular locomotion upon the redistribution and capping of concanavalin A (Con A). Con A was detected by fluorescence (using Con A conjugated to fluorescein isothiocyanate [Con A-FITC]), or on shadow-cast replicas (using Busycon canaliculatum hemocyanin as a marker for Con A). After labeling with Con A 100 µg/ml at 4°C and warming to 37°C, locomotion occurred, and the Con A quickly aggregated into a cap at the trailing end of the cell. When locomotion was inhibited (with cytochalasin B, or by incubation in serum-free medium at 18°C) Con A rapidly formed a cap over the central region of the cell. Iodoacetamide inhibited capping. PMN labeled with FITC, a monovalent ligand, developed caps at the tail only on motile cells; FITC remained dispersed on immobilized cells. PMN exposed to Con A 100 µg/ml at 37°C bound more lectin than at 4°C, became immobilized, and showed slow central capping. The Con A soon became internalized to form a perinuclear ring. Such treatment in the presence of cytochalasin B resulted in the quick formation of persistent central caps. Colchicine (or prior cooling) protected PMN from the immobilizing effect of Con A, and tail caps were found on 30–40% of cells. Immobilization of colchicine-treated cells caused Con A to remain in dispersed clusters. Thus, capping on PMN is a temperature- and energy-dependent process that proceeds independently of cellular locomotion, provided a colchicine-sensitive system is intact and the ligand is capable of cross linking receptors. On the other hand, if the cell does move, it appears that ligands may be swept into a cap at the tail whether cross-linking occurs or not.


1986 ◽  
Vol 55 (02) ◽  
pp. 268-270
Author(s):  
R J Alexander

SummaryAn attempt was made to isolate from plasma the platelet surface substrate for thrombin, glycoprotein V (GPV), because a GPV antigen was reported to be present in plasma (3). Plasma fractionation based on procedures for purification of GPV from platelets revealed a thrombin-sensitive protein with appropriate electrophoretic mobility. The protein was purified; an antiserum against it i) reacted with detergent-solubilized platelet proteins or secreted proteins in a double diffusion assay, ii) adsorbed a protein from the supernatant solution of activated platelets, and iii) inhibited thrombin-induced platelet activation, but the antiserum did not adsorb labeled GPV. The purified protein was immunochemically related to prothrombin rather than to GPV. Other antibodies against prothrombin were also able to adsorb a protein from platelets. It is concluded that 1) plasma does not contain appreciable amounts of GPV, and 2) platelets contain prothrombin or an immunochemically similar protein.


1975 ◽  
Vol 66 (2) ◽  
pp. 392-403 ◽  
Author(s):  
B Storrie

Exposure of CHO-K1 cells in vitro to dibutyryl adenosine cyclic 3',5'-monophosphate (DBcAMP) plus testololactone produces a rapid, reversible antagonism of ligand-induced collection of initially dispersed concanavalin A (Con A) binding sites into a caplike mass. Morphologically, as Con A capping occurs, the cells become less spread and then round completely. With prolonged Con A exposure, cells cultured in either the absence or the presence of DBcAMP plus testololactone cap and round. Capping is blocked by cold treatment and respiratory inhibitors. Colcemid at concentrations greater than 1 muM promotes both Con A capping and cell rounding. Cytochalasin B at similar concentrations inhibits both capping and cell rounding. Treatment of cells with Con A has little effect on intracellular cAMP concentration. Possible mechanisms by which cAMP may modulate the movement of Con A binding sites are discussed.


Blood ◽  
1994 ◽  
Vol 83 (4) ◽  
pp. 1006-1016 ◽  
Author(s):  
AD Cox ◽  
DV Devine

Abstract Stabilization of a clot is dependent on fibrin cross-linking mediated by the transglutaminase, factor XIIIa (FXIIIa). In addition to fibrin stabilization, FXIIIa acts on a number of platelet-reactive proteins, including fibronectin and vitronectin, as well as the platelet proteins, glycoprotein (GP) IIb-IIIa, myosin, and actin. However, conditions inducing the platelet-activation dependent binding of FXIIIa have not been characterized nor have the sites mediating FXIIIa binding been identified. The generation of FXIIIa and consequent detection of FXIIIa on the platelet surface were compared with other thrombin- induced activation events; the rate at which FXIIIa bound to activated platelets was much slower than platelet degranulation or fibrin(ogen) binding. Whereas platelets could be rapidly induced to express a functional receptor for FXIIIa, the rate of FXIIIa binding to platelets is limited by the rate of conversion of FXIII to FXIIIa. Immunoprecipitation of radiolabeled platelets using polyclonal anti- FXIII A-chain antibody identified two proteins corresponding to GPIIb and GPIIIa. Preincubation of intact platelets with 7E3, a monoclonal antibody that blocks the fibrinogen binding site, or GRGDSP peptide inhibited FXIIIa binding by about 95% when measured by flow cytometry; FXIIIa binding to purified GPIIb-IIIa was also inhibited by 7E3. The binding of FXIIIa to purified GPIIb-IIIa was enhanced by the addition of fibrinogen, but not by that of fibronectin or thrombospondin, suggesting that FXIIIa also binds to fibrinogen associated with the complex. These observations suggest that activated platelets bearing FXIIIa may enhance stabilization of platelet-rich thrombi through surface-localized cross-linking events.


1987 ◽  
Vol 241 (2) ◽  
pp. 521-525 ◽  
Author(s):  
S M Gokhale ◽  
N G Mehta

Three properties related to the erythrocyte membrane skeleton are found to be altered after the binding of concanavalin A (Con A) to erythrocytes or their isolated membranes. Con A binding to normal erythrocytes imparts resistance to heat (49 degrees C)-induced fragmentation of the cells. The fragmentation, due to denaturation of spectrin at 49 degrees C, is prevented by Con A in a dose-dependent manner, but levels off at concentrations of Con A in excess of 100 micrograms/ml. The binding of Con A to ghosts isolated from normal, trypsin- or Pronase-treated cells prevents (completely or substantially) the elution of the skeletal protein complex when the membranes are extracted under low-ionic-strength conditions in the cold. The Con A-agglutinated membranes of trypsin- and Pronase-treated, but not normal, cells show cross-linking of skeletal proteins and band 3 with dimethyl adipimidate, a 0.86 nm (8.6 A)-span bifunctional reagent. The extent of cross-linking is greater in the Pronase-treated membrane than in the less-agglutinable trypsin-treated membranes. The results show that, after Con A has bound, rearrangements occur in the membrane that alter properties of the skeletal proteins. Additionally, redistribution of the skeletal proteins and the Con A receptor occurs in the lectin-agglutinated membranes.


Blood ◽  
1993 ◽  
Vol 82 (9) ◽  
pp. 2704-2713 ◽  
Author(s):  
R Vezza ◽  
R Roberti ◽  
GG Nenci ◽  
P Gresele

Abstract Prostaglandin E2 (PGE2) is produced by activated platelets and by several other cells, including capillary endothelial cells. PGE2 exerts a dual effect on platelet aggregation: inhibitory, at high, supraphysiologic concentrations, and potentiating, at low concentrations. No information exists on the biochemical mechanisms through which PGE2 exerts its proaggregatory effect on human platelets. We have evaluated the activity of PGE2 on human platelets and have analyzed the second messenger pathways involved. PGE2 (5 to 500 nmol/L) significantly enhanced aggregation induced by subthreshold concentrations of U46619, thrombin, adenosine diphosphate (ADP), and phorbol 12-myristate 13-acetate (PMA) without simultaneously increasing calcium transients. At a high concentration (50 mumol/L), PGE2 inhibited both aggregation and calcium movements. PGE2 (5 to 500 nmol/L) significantly enhanced secretion of beta-thromboglobulin (beta TG) and adenosine triphosphate from U46619- and ADP-stimulated platelets, but it did not affect platelet shape change. PGE2 also increased the binding of radiolabeled fibrinogen to the platelet surface and increased the phosphorylation of the 47-kD protein in 32P- labeled platelets stimulated with subthreshold doses of U46619. Finally, the amplification of U46619-induced aggregation by PGE2 (500 nmol/L) was abolished by four different protein kinase C (PKC) inhibitors (calphostin C, staurosporine, H7, and TMB8). Our results suggest that PGE2 exerts its facilitating activity on agonist-induced platelet activation by priming PKC to activation by other agonists. PGE2 potentiates platelet activation at concentrations produced by activated platelets and may thus be of pathophysiologic relevance.


Blood ◽  
1986 ◽  
Vol 67 (1) ◽  
pp. 12-18 ◽  
Author(s):  
MO Spycher ◽  
UE Nydegger

Abstract The differential uptake of tritium-labeled immunoglobulin G (IgG) cross- linked with bisdiazonium-benzidine (BDB) (3H-BDB-IgG) by washed, pooled human platelets to sites inaccessible to pronase digestion was tested. Up to 52% of the 3H-BDB-IgG associated with platelets at 37 degrees C resisted pronase treatment, whereas only 23% of the cross-linked IgG associated with platelets at 4 degrees C, or at 37 degrees C but in the presence of deoxyglucose/antimycin A, remained refractory to pronase. This effect was not due to platelet agglutination. Pronase resistance reached a maximum after a 60-minute incubation period at 37 degrees C. With increasing 3H-BDB-IgG input, both the total cross-linked IgG associated with platelets and the fraction resistant to pronase digestion approached saturation at 4 degrees C, but not at 37 degrees C. The proportion of 3H-BDB-IgG bound to platelets at 4 degrees C that was resistant to pronase treatment increased by 13% within five minutes of warming the platelets to 37 degrees C. Pretreatment of platelets with 10 mmol/L acetylsalicylic acid (or 10 mumol/L prostaglandin E1) prior to the addition of 3H-BDB-IgG led to a 74% (95%) inhibition of the 3H-BDB-IgG-induced 14C-serotonin release, but to only a 44% (49%) inhibition of pronase-digestible bound ligand. In contrast, pretreatment with 10 mumol/L cytochalasin B led to a mere 17% reduction of 14C-serotonin release, whereas acquisition of resistance to pronase digestion by the bound 3H-BDB-IgG was inhibited by 90%. Incubation of platelets at 37 degrees C with 3H-BDB-IgG and removal of unbound material prior to the addition of prostaglandin E1 or deoxyglucose/antimycin A had little effect on the susceptibility of platelet-associated 3H-BDB-IgG to pronase, whereas the addition of cytochalasin B to 3H-BDB-IgG-treated platelets resulted in greatly increased susceptibility of the platelet-associated ligand to pronase. Thus, after binding, 3H-BDB-IgG becomes transferred in an energy- dependent process to pronase-resistant cellular sites, most likely to the open canalicular system.


1976 ◽  
Vol 231 (2) ◽  
pp. 344-350 ◽  
Author(s):  
KG Orloff ◽  
D Michaeli

Human platelets were reacted with polymerized fibrin formed from human fibrinogen. The platelets adhered to the fibrin particles and this adhesion was followed by the release of serotonin from prelabeled platelets. The adhesion of platelets to fibrin was not inhibited by adenosine or prostaglandin E1. However, the subsequent Ca2+-dependent release of platelet serotonin was completely inhibited by these compounds. After the initial platelet-fibrin interaction, ADP and serotonin released from activated platelets may lead to additional platelet aggregation and release. Therefore, in addition to clot stabilization, fibrin serves as an initiator of the platelet release reaction. This in turn initiates the self-amplifying process of platelet aggregation.


1977 ◽  
Vol 27 (1) ◽  
pp. 227-243
Author(s):  
B.R. Fraser ◽  
S.E. Zalik

Dissociated blastula cells of Xenopus laevis are agglutinated with wheat germ agglutinin (WGA), Ricinus communis agglutinin (RCA), concanavalin A (Con A) and, to a lesser extent with soya bean agglutinin (SBA). They are not agglutinated with fucose-binding protein. Neuraminidase treatment of cells enhances their agglutinability with RCA and SBA, but has no effect on Con A- and WGA-mediated agglutinability. Treatment of cells with procaine, or xylocaine, has no effect on the cells' agglutinability or on the extrusion of lobopodia. Treatment with colchicine or cytochalasin B either separately or simultaneously has no effect on lectin-mediated agglutinability. Cells treated with cytochalasin B or colchicine and cytochalasin B simultaneously lack lobopodial extensions, while colchicine alone has no effect on these structures. Phenothiazine tranquillizers inhibit agglutination mediated by all of the above mentioned lectins. Lobopodial extensions are absent in cells treated with these compounds. Glutaraldehyde fixation inhibits RCA and WGA mediated agglutinability and reduces the Con A-mediated agglutinability. Results suggest that in this system microtubules and microfilaments are not involved in lectin-mediated agglutination.


1982 ◽  
Vol 204 (1) ◽  
pp. 229-237 ◽  
Author(s):  
Anthony N. Corps ◽  
James C. Metcalfe ◽  
Tullio Pozzan

1. Differences in the rates at which ligands cap various receptors on the same cells, and their sensitivity to various drugs, have been interpreted as evidence that there are distinct mechanisms for ‘fast’ and ‘slow’ cap formation. We have examined the factors which determine the rate of cap formation of three receptors on mouse splenic lymphocytes or thymocytes, and compared the effects of cytochalasin B or colchicine under conditions where the different receptors cap at similar rates. 2. When surface immunoglobulin, concanavalin A receptors, or θ antigen are induced to cap at their maximal rates by appropriate concentrations of one or more cross-linking ligands, the half-time for maximal capping of each receptor population is between 1.5 and 3.0min at 37°C. Slower rates of cap formation are obtained by using non-optimal concentrations of the cross-linking ligands. 3. When the three receptors were induced to cap at similar rates (either maximal or slower), 10μm-cytochalasin B caused a similar decrease in the rate of cap formation for each receptor, without affecting the eventual extent of capping. At comparable capping rates on control cells, colchicine (10μm) increased the rate of cap formation for surface immunoglobulin and concanavalin A receptors to a similar extent, without affecting the eventual extent of cap formation. In contrast, colchicine had no detectable effect on the capping of θ antigen. 4. From these results, we conclude that there are no intrinsic differences in the rates at which different receptors can be induced to cap that can be used to diagnose differences in their mechanisms of cap formation. The observation that ligand concentration and the drugs acting on the cytoskeleton generally affect the rate but not the extent of cap formation accounts for the wide variation in reported effects of the drugs on cap formation measured at fixed times. The receptor-specific effect of colchicine on surface immunoglobulin and concanavalin A receptors, but not θ antigen, is not readily compatible with models of cap formation which depend on lipid or membrane flow.


Sign in / Sign up

Export Citation Format

Share Document