scholarly journals Identification of a MAP 2-like ATP-binding protein associated with axoplasmic vesicles that translocate on isolated microtubules.

1986 ◽  
Vol 103 (3) ◽  
pp. 947-956 ◽  
Author(s):  
S P Gilbert ◽  
R D Sloboda

Axoplasmic vesicles were purified and observed to translocate on isolated microtubules in an ATP-dependent, trypsin-sensitive manner, implying that ATP-binding polypeptides essential for force generation were present on the vesicle surface. To identify these proteins [alpha 32P]8-azidoadenosine 5'-triphosphate ([alpha 32P]8-N3ATP), a photoaffinity analogue of ATP, was used. The results presented here identify and characterize a vesicle-associated polypeptide having a relative molecular mass of 292 kD that bound [alpha 32P]8-N3ATP. The incorporation of label is ultraviolet light-dependent and ATP-sensitive. Moreover, the 292-kD polypeptide could be isolated in association with vesicles or microtubules, depending on the conditions used, and the data indicate that the 292-kD polypeptide is similar to mammalian brain microtubule-associated protein 2 (MAP 2) for the following reasons: The 292-kD polypeptide isolated from either squid axoplasm or optic lobe cross-reacts with antiserum to porcine brain MAP 2. Furthermore, it purifies with taxol-stabilized microtubules and is released with salt. Based on these characteristics, the 292-kD polypeptide is distinct from the known force-generating molecules myosin and flagellar dynein, as well as the 110-130-kD kinesin-like polypeptides that have recently been described (Brady, S. T., 1985, Nature (Lond.), 317:73-75; Vale, R. D., T. S. Reese, and M. P. Sheetz, 1985b, Cell, 42:39-50; Scholey, J. M., M. E. Porter, P. M. Grissom, and J. R. McIntosh, 1985, Nature (Lond.), 318:483-486). Because the 292-kD polypeptide binds ATP and is associated with vesicles that translocate on purified MAP-free microtubules in an ATP-dependent fashion, it is therefore believed to be involved in vesicle-microtubule interactions that promote organelle motility.

1989 ◽  
Vol 109 (5) ◽  
pp. 2379-2394 ◽  
Author(s):  
S P Gilbert ◽  
R D Sloboda

Axoplasmic vesicles that translocate on isolated microtubules in an ATP-dependent manner have an associated ATP-binding polypeptide with a previously estimated relative molecular mass of 292 kD (Gilbert, S. P., and R. D. Sloboda. 1986. J. Cell Biol. 103:947-956). Here, data are presented showing that this polypeptide (designated H1) and another high molecular mass polypeptide (H2) can be isolated in association with axoplasmic vesicles or optic lobe microtubules. The H1 and H2 polypeptides dissociate from microtubules in the presence of MgATP and can be further purified by gel filtration chromatography. The peak fraction thus obtained demonstrates MgATPase activity and promotes the translocation of salt-extracted vesicles (mean = 0.87 microns/s) and latex beads (mean = 0.92 microns/s) along isolated microtubules. The H1 polypeptide binds [alpha 32P]8-azidoATP and is thermosoluble, but the H2 polypeptide does not share these characteristics. In immunofluorescence experiments with dissociated squid axoplasm, affinity-purified H1 antibodies yield a punctate pattern that corresponds to vesicle-like particles, and these antibodies inhibit the bidirectional movement of axoplasmic vesicles. H2 is cleaved by UV irradiation in the presence of MgATP and vanadate to yield vanadate-induced peptides of 240 and 195 kD, yet H1 does not cleave under identical conditions. These experiments also demonstrate that the actual relative molecular mass of the H1 and H2 polypeptides is approximately 435 kD. On sucrose density gradients, H1 and H2 sediment at 19-20 S, and negatively stained samples reveal particles comprised of two globular heads with stems that contact each other and extend to a common base. The results demonstrate that the complex purified is a vesicle-associated ATPase whose characteristics indicate that it is a squid isoform of dynein. Furthermore, the data suggest that this vesicle-associated dynein promotes membranous organelle motility during fast axoplasmic transport.


1990 ◽  
Vol 55 (8) ◽  
pp. 1959-1967 ◽  
Author(s):  
Petr Vaňura ◽  
Pavel Selucký

The extraction of polyethylene glycol of average molecular mass 400 (PEG 400) with dicarbolide solution in nitrobenzene and of longer-chain polyethylene glycol, of average molecular mass 1 500 (PEG 1 500), with chlorinated dicarbolide solution in nitrobenzene was studied. During the extraction of PEG 400, the polyethylene glycol solvates the Horg+ ion in the organic phase giving rise to the HLorg+ species (L is polyethylene glycol). The obtained value of the extraction constant Kex(HLorg+) = 933 is consistent with published data of metal extraction. Extraction of PEG 1 500 was treated applying the simplified assumption that the thermodynamic behaviour of PEG 1 500 is the same as that of n molecules of polyethylene glycol with relative molecular mass 1 500/n, each solvating one cation. For this model, the value of n = 3.2 ± 1.1 and the values of the extraction constants of the HL1/n,org+ and HL2/n,org+ species were obtained by using the adapted program LETAGROP. This value of n is consistent with published extraction data in the presence of polyethylene glycol with a relative molecular mass from 200 to 1 000.


1980 ◽  
Vol 210 (1180) ◽  
pp. 387-396 ◽  

The avian sarcoma virus transforming gene product has been identified and partially purified from extracts of transformed cells. It is a phosphoprotein with a relative molecular mass of 60 000 (pp60 src ) with two major sites of phosphorylation. pp60 src appears to be a cyclic-AMP-independent protein kinase as judged by protein phosphorylation with partly purified fractions. The specificity of the phosphorylation observed was judged by inhibition with anti-pp60 src IgG but not by normal IgG and by the fact that the protein kinase activity isolated from ts transformation-mutant infected cells was more thermolabile than that from wild-type transformed cells, thus showing more directly the origin of the enzymic activity. A cellular protein substrate of pp60 src has been identified as a 34000 molecular mass protein. These data together suggest that protein phosphorylation by pp60 src may be a function of the molecule that plays a major role in transformation.


1991 ◽  
Vol 124 (1) ◽  
pp. 107-114 ◽  
Author(s):  
Egberto G. Moura ◽  
Carmen C. Pazos-Moura ◽  
Naokata Yokoyama ◽  
Martha L. Dorris ◽  
Alvin Taurog

Abstract Thyroid peroxidase is a heme-containing, membrane-bound, glycoprotein enzyme that catalyzes iodination and coupling in the thyroid gland. It is also the antigen for microsomal autoantibodies that are commonly found in the serum of patients with autoimmune thyroid disease. We examined the effect of deglycosylation on the catalytic functions and the immunoreactivity of this enzyme. A highly purified, solubilized, large tryptic fragment of porcine thyroid peroxidase, retaining all of the N-linked glycosylation sites of the native enzyme and displaying full catalytic activity was used. It was deglycosylated by treatment with N-glycanase under nondenaturing conditions. The loss in relative molecular mass after treatment, determined by gel electrophoresis, was about 75% of the estimated molecular weight of the glycan portion of porcine thyroid peroxidase. Lectin blots performed with horseradish peroxidase-conjugated concanavalin A showed a similar loss in relative molecular mass but some residual carbohydrate. The intensity of the carbohydrate stain was consistent with the loss of about 75% of the glycans. Despite this loss, three different assays for catalytic activity of porcine thyroid peroxidase were not significantly decreased. Immunoreactivity measured by immunoblotting and by enzyme-linked immunosorbent assay was also unimpaired. These findings suggest that N-glycanase-sensitive glycans in porcine thyroid peroxidase do not act as antigenic determinants and play a minor role, if any, in catalytic activity and, presumably therefore, in the maintenance of protein conformation.


Development ◽  
1990 ◽  
Vol 110 (1) ◽  
pp. 221-227
Author(s):  
A.N. Corps ◽  
D.R. Brigstock ◽  
C.J. Littlewood ◽  
K.D. Brown

125I-labelled epidermal growth factor (125I-EGF) and 125I-labelled insulin-like growth factor-I (125I-IGF-I) bound to trophoderm cells from pig blastocysts obtained on days 15–19 of pregnancy. Specific binding was detected on freshly isolated cell suspensions and on cells cultured for several days. The binding of 125I-EGF was inhibited by increasing concentrations of EGF, but not by various other growth factors and hormones. Chemical cross-linking of 125I-EGF to its receptors using disuccinimidyl suberate (DSS) revealed a radiolabelled band of relative molecular mass 160,000, similar to that identified as the EGF receptor in other cell types. The binding of 125I-IGF-I was inhibited by both IGF-I and insulin, indicating that the receptors were either type I IGF receptors or insulin receptors. Cross-linking of 125I-IGF-I to serum-free supernatants from trophoderm cultures showed that the cells secreted an IGF-binding protein, giving a complex of relative molecular mass about 45,000. The presence of receptors for EGF and IGF/insulin suggests that these factors could be involved in regulating the growth and development of the early blastocyst.


1996 ◽  
Vol 320 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Daniel T CONNOLLY ◽  
Jonathan McINTYRE ◽  
Deborah HEUVELMAN ◽  
Edward E REMSEN ◽  
Russell E McKINNIE ◽  
...  

Cholesteryl ester transfer protein (CETP) mediates the exchange of triglycerides (TGs), cholesteryl esters (CEs) and phospholipids (PLs) between lipoproteins in the plasma. In order to better understand the lipid transfer process, we have used recombinant human CETP expressed in cultured mammalian cells, purified to homogeneity by immunoaffinity chromatography. Purified recombinant CETP had a weight-average relative molecular mass (Mw) of 69561, determined by sedimentation equilibrium, and a specific absorption coefficient of 0.83 litre·g-1· cm-1. The corresponding hydrodynamic diameter (Dh) of the protein, determined by dynamic light scattering, was 14 nm, which is nearly twice the expected value for a spheroidal protein of this molecular mass. These data suggest that CETP has a non-spheroidal shape in solution. The secondary structure of CETP was estimated by CD to contain 32% α-helix, 35% β-sheet, 17% turn and 16% random coil. Like the natural protein from plasma, the recombinant protein consisted of several glycoforms that could be only partially deglycosylated using N-glycosidase F. Organic extraction of CETP followed by TLC showed that CE, unesterified cholesterol (UC), PL, TG and fatty acids (FA) were associated with the pure protein. Quantitative analyses verified that each mol of CETP contained 1.0 mol of cholesterol, 0.5 mol of TG and 1.3 mol of PL. CETP mediated the transfer of CE, TG, PL, and UC between lipoproteins, or between protein-free liposomes. In dual-label transfer experiments, the transfer rates for CE or TG from HDL to LDL were found to be proportional to the initial concentrations of the respective ligands in the donor HDL particles. Kinetic analysis of CE transfer was consistent with a carrier mechanism, having a Km of 700 nM for LDL particles and of 2000 nM for HDL particles, and a kcat of 2 s-1. The Km values were thus in the low range of the normal physiological concentration for each substrate. The carrier mechanism was verified independently for CE, TG, PL and UC in ‘half-reaction’ experiments.


Genetics ◽  
1990 ◽  
Vol 125 (4) ◽  
pp. 739-752 ◽  
Author(s):  
C A Woolford ◽  
C K Dixon ◽  
M F Manolson ◽  
R Wright ◽  
E W Jones

Abstract pep5 mutants of Saccharomyces cerevisiae accumulate inactive precursors to the vacuolar hydrolases. The PEP5 gene was isolated from a genomic DNA library by complementation of the pep5-8 mutation. Deletion analysis localized the complementing activity to a 3.3-kb DNA fragment. DNA sequence analysis of the PEP5 gene revealed an open reading frame of 1029 codons with a calculated molecular mass for the encoded protein of 117,403 D. Deletion/disruption of the PEP5 gene did not kill the cells. The resulting strains grow very slowly at 37 degrees. The disruption mutant showed greatly decreased activities of all vacuolar hydrolases examined, including PrA, PrB, CpY, and the repressible alkaline phosphatase. Apparently normal precursors forms of the proteases accumulated in pep5 mutants, as did novel forms of PrB antigen. Antibodies raised to a fusion protein that contained almost half of the PEP5 open reading frame allowed detection by immunoblot of a protein of relative molecular mass 107 kD in extracts prepared from wild-type cells. Cell fractionation showed the PEP5 gene product is enriched in the vacuolar fraction and appears to be a peripheral vacuolar membrane protein.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Joseph Atherton ◽  
Irene Farabella ◽  
I-Mei Yu ◽  
Steven S Rosenfeld ◽  
Anne Houdusse ◽  
...  

Kinesins are a superfamily of microtubule-based ATP-powered motors, important for multiple, essential cellular functions. How microtubule binding stimulates their ATPase and controls force generation is not understood. To address this fundamental question, we visualized microtubule-bound kinesin-1 and kinesin-3 motor domains at multiple steps in their ATPase cycles—including their nucleotide-free states—at ∼7 Å resolution using cryo-electron microscopy. In both motors, microtubule binding promotes ordered conformations of conserved loops that stimulate ADP release, enhance microtubule affinity and prime the catalytic site for ATP binding. ATP binding causes only small shifts of these nucleotide-coordinating loops but induces large conformational changes elsewhere that allow force generation and neck linker docking towards the microtubule plus end. Family-specific differences across the kinesin–microtubule interface account for the distinctive properties of each motor. Our data thus provide evidence for a conserved ATP-driven mechanism for kinesins and reveal the critical mechanistic contribution of the microtubule interface.


1991 ◽  
Vol 98 (3) ◽  
pp. 309-315
Author(s):  
S.M. Dilworth

An antibody that recognizes the phosphorylated form of nucleoplasmin has identified another nuclear protein whose antigenic form is regulated in a mitosis-specific manner, with a dramatic increase in binding occurring in all mitotic cells. The protein is localised around the periphery of condensed chromosomes during mitosis in a manner analogous to another nucleoplasmin-related polypeptide NO38. Mitosis-specific expression of the antigenic site is dependent on phosphorylation of the polypeptide; binding of the antibody is dramatically reduced by prior incubation of the polypeptide with phosphatases. Migration on SDS-PAGE suggests that the protein has an exceptionally large relative molecular mass, in excess of 400,000. The probable mitosis-specific phosphorylation and location of this antigen suggests a subcellular storage mechanism for proteins during mitosis.


Sign in / Sign up

Export Citation Format

Share Document