scholarly journals Adhesive and degradative properties of human placental cytotrophoblast cells in vitro.

1989 ◽  
Vol 109 (2) ◽  
pp. 891-902 ◽  
Author(s):  
S J Fisher ◽  
T Y Cui ◽  
L Zhang ◽  
L Hartman ◽  
K Grahl ◽  
...  

Human fetal development depends on the embryo rapidly gaining access to the maternal circulation. The trophoblast cells that form the fetal portion of the human placenta have solved this problem by transiently exhibiting certain tumor-like properties. Thus, during early pregnancy fetal cytotrophoblast cells invade the uterus and its arterial network. This process peaks during the twelfth week of pregnancy and declines rapidly thereafter, suggesting that the highly specialized, invasive behavior of the cytotrophoblast cells is closely regulated. Since little is known about the actual mechanisms involved, we developed an isolation procedure for cytotrophoblasts from placentas of different gestational ages to study their adhesive and invasive properties in vitro. Cytotrophoblasts isolated from first, second, and third trimester human placentas were plated on the basement membrane-like extracellular matrix produced by the PF HR9 teratocarcinoma cell line. Cells from all trimesters expressed the calcium-dependent cell adhesion molecule cell-CAM 120/80 (E-cadherin) which, in the placenta, is specific for cytotrophoblasts. However, only the first trimester cytotrophoblast cells degraded the matrices on which they were cultured, leaving large gaps in the basement membrane substrates and releasing low molecular mass 3H-labeled matrix components into the medium. No similar degradative activity was observed when second or third trimester cytotrophoblast cells, first trimester human placental fibroblasts, or the human choriocarcinoma cell lines BeWo and JAR were cultured on radiolabeled matrices. To begin to understand the biochemical basis of this degradative behavior, the substrate gel technique was used to analyze the cell-associated and secreted proteinase activities expressed by early, mid, and late gestation cytotrophoblasts. Several gelatin-degrading proteinases were uniquely expressed by early gestation, invasive cytotrophoblasts, and all these activities could be abolished by inhibitors of metalloproteinases. By early second trimester, the time when cytotrophoblast invasion rapidly diminishes in vivo, the proteinase pattern of the cytotrophoblasts was identical to that of term, noninvasive cells. These results are the first evidence suggesting that specialized, temporally regulated metalloproteinases are involved in trophoblast invasion of the uterus. Since the cytotrophoblasts from first trimester and later gestation placentas maintain for several days the temporally regulated degradative behavior displayed in vivo, the short-term cytotrophoblast outgrowth culture system described here should be useful in studying some of the early events in human placen

Endocrinology ◽  
2012 ◽  
Vol 153 (9) ◽  
pp. 4502-4510 ◽  
Author(s):  
Isobelle Grant ◽  
Judith E. Cartwright ◽  
Brooke Lumicisi ◽  
Alison E. Wallace ◽  
Guy S. Whitley

Impaired trophoblast invasion is associated with pregnancy disorders such as early pregnancy loss and preeclampsia. There is evidence to suggest that the consumption of caffeine during pregnancy may increase the risk of pregnancy loss; however, little is known about the direct effect of caffeine on normal trophoblast biology. Our objectives were to examine the effect of caffeine on trophoblast migration and motility after stimulation with epidermal growth factor (EGF) and to investigate the intracellular signaling pathways involved in this process. Primary first-trimester extravillous trophoblasts (EVT) and the EVT-derived cell line SGHPL-4 were used to study the effect of caffeine on EGF-stimulated cellular motility using time-lapse microscopy. SGHPL-4 cells were further used to study the effect of caffeine and cAMP on EGF-stimulated invasion of fibrin gels. The influence of caffeine and cAMP on EGF-stimulated intracellular signaling pathways leading to the activation of Akt were investigated by Western blot analysis. Caffeine inhibits both EGF-stimulated primary EVT and SGHPL-4 cell motility. EGF stimulation activates phosphatidylinositol 3-kinase, and Akt and caffeine inhibit this activation. Although cAMP inhibits both motility and invasion, it does not inhibit the activation of Akt, indicating that the effects of caffeine seen in this study are independent of cAMP. Further investigation indicated a role for mammalian target of rapamycin complex 2 (mTORC2) as a target for the inhibitory effect of caffeine. In conclusion, we demonstrate that caffeine inhibits EGF-stimulated trophoblast invasion and motility in vitro and so could adversely influence trophoblast biology in vivo.


1982 ◽  
Vol 94 (3) ◽  
pp. 597-606 ◽  
Author(s):  
F Grinnell ◽  
J R Head ◽  
J Hoffpauir

The rat endometrium during pregnancy was used as a model system to study fibronectin in vivo. Fibronectin distribution on stromal fibroblasts, as determined by indirect immunofluorescence staining, was studied in relationship to cell shape during decidual transformation. Fibroblasts of the estrus endometrial stroma were elongated cells with a fibrillar pattern of fibronectin on their surfaces. During days 1-6 of pregnancy, as these elongated cells acquired a round morphology, fibronectin changed first to a patched distribution on the cells'a surfaces and then disappeared. The change in fibronectin was specific for the fibroblasts since over the same time period there was no decrease in fibronectin found associated with blood vessels or in the epithelial-stromal basement membrane. These results support the proposed relationship between cell surface fibronectin and cell shape that has been inferred from in vitro experiments. After implantation, fibronectin distribution was studied in relationship to the position of the conceptus. In the stroma proximal to the implanting conceptus, fibronectin was absent except around blood vessels, which may help explain how decidual tissue could act as a barrier to trophoblast invasion. Finally, fibronectin distribution was studied in the uterus after parturition. Debris in the uterine lumen was coated with fibronectin, which may be important in the rapid removal of this material by phagocytic cells. Also, fibronectin associated with the epithelial-stromal basement membrane was reorganized after reepithelialization had occurred.


Reproduction ◽  
2010 ◽  
Vol 140 (4) ◽  
pp. 605-612 ◽  
Author(s):  
Murat Basar ◽  
Chih-Feng Yen ◽  
Lynn F Buchwalder ◽  
William Murk ◽  
S Joseph Huang ◽  
...  

Preeclampsia is associated with increased systemic inflammation and superficial trophoblast invasion, which leads to insufficient uteroplacental blood flow. Interleukin (IL)-11 mediates pro- and anti-inflammatory processes and facilitates decidualization. To identify IL11 expression in vivo at the maternal–placental interface in preeclampsia and control specimens and to evaluate the regulatory effects of tumor necrosis factor-α (TNF) and IL1B, cytokines elevated in preeclampsia, on IL11 levels in first trimester decidual cells in vitro, placental sections were immunostained for IL11. Leukocyte-free first trimester decidual cells were incubated with estradiol (E2)±10−7 mol/l medroxyprogesterone acetate±TNF or IL1B± inhibitors of the p38 MAP kinase (p38 MAPK), nuclear factor-κ B (NFKB), or protein kinase C (PKC) signaling pathways. An ELISA assessed secreted IL11 levels, and quantitative RT-PCR measured IL11 mRNA. IL11 immunoreactivity in placental sections was significantly higher in the cytoplasm of preeclamptic decidual cells versus gestational age-matched controls. Compared to decidual cells, IL11 immunostaining in neighboring trophoblast is lower, perivascular, and not different between control and preeclamptic specimens. TNF and IL1B enhanced levels of IL11 mRNA and secreted IL11 in cultured decidual cells. Specific inhibitors of the p38 MAPK and NFKB, but not PKC signaling pathways, reduced the stimulatory effect of IL1B. Expression of decidual IL11 is increased in preeclampsia and suggests a role for IL11 in the pathogenesis of preeclampsia.


Placenta ◽  
2008 ◽  
Vol 29 (10) ◽  
pp. 871-878 ◽  
Author(s):  
S. Kalkunte ◽  
Z. Lai ◽  
N. Tewari ◽  
C. Chichester ◽  
R. Romero ◽  
...  
Keyword(s):  

Development ◽  
1991 ◽  
Vol 113 (1) ◽  
pp. 245-255 ◽  
Author(s):  
M. Van Doren ◽  
H.M. Ellis ◽  
J.W. Posakony

In Drosophila, a group of regulatory proteins of the helix-loop-helix (HLH) class play an essential role in conferring upon cells in the developing adult epidermis the competence to give rise to sensory organs. Proteins encoded by the daughterless (da) gene and three genes of the achaete-scute complex (AS-C) act positively in the determination of the sensory organ precursor cell fate, while the extramacrochaetae (emc) and hairy (h) gene products act as negative regulators. In the region upstream of the achaete gene of the AS-C, we have identified three ‘E box’ consensus sequences that are bound specifically in vitro by hetero-oligomeric complexes consisting of the da protein and an AS-C protein. We have used this DNA-binding activity to investigate the biochemical basis of the negative regulatory function of emc. Under the conditions of our experiments, the emc protein, but not the h protein, is able to antagonize specifically the in vitro DNA-binding activity of da/AS-C and putative da/da protein complexes. We interpret these results as follows: the heterodimerization capacity of the emc protein (conferred by its HLH domain) allows it to act in vivo as a competitive inhibitor of the formation of functional DNA-binding protein complexes by the da and AS-C proteins, thereby reducing the effective level of their transcriptional regulatory activity within the cell.


2021 ◽  
Vol 3 (Supplement_1) ◽  
pp. i15-i16
Author(s):  
Sachin Kumar ◽  
Antony Michealraj ◽  
Leo Kim ◽  
Jeremy Rich ◽  
Michael Taylor

Abstract Ependymomas are malignant glial tumours that occur throughout the central nervous system. Of the nine distinct molecular subgroups of ependymoma, Posterior Fossa A (PFA), is the most prevalent, occurring in the hindbrain of infants and young children. Lacking highly recurrent somatic mutations, PFAs are thought to be a largely epigenetically driven entity, defined by hypomethylation at the histone 3 lysine 27 residue. Previous transcriptional analysis of PFAs revealed an enrichment of hypoxia signaling genes. Thus, we hypothesized that hypoxic signaling, in combination with a unique metabolic milieu, drive PFA oncogenesis through epigenetic regulation. In this study, we identified that PFA cells control the availability of specific metabolites under hypoxic conditions, resulting in diminished H3K27 trimethylation and increased H3K27 acetylation in vitro and in vivo. Unique to PFA cells, transient exposure to ambient oxygen results in irreversible cellular toxicity. Furthermore, perturbation of key metabolic pathways is sufficient to inhibit growth of PFA primary cultures in vitro. PFA cells sequester s-adenosylmethionine while upregulating EZHIP, a polycomb repressive complex 2 (PRC2) inhibitor, resulting in decreased H3K27 trimethylation. Furthermore, hypoxia fine-tunes the abundance of alpha-ketoglutarate and acetyl-CoA to fuel demethylase and acetyltransferase activity. Paradoxically, a genome-wide CRISPR knockout screen identified the core components of PRC2 as uniquely essential in PFAs. Our findings suggest that PFAs thrive in a narrow “Goldilocks” zone, whereby they must maintain a unique epigenome and deviation to increased or decreased H3K27 trimethylation results in diminished cellular fitness. Previously, we showed that PFAs have a putative cell of origin arising in the first trimester of development. Using single-cell RNAseq and metabolomics, we demonstrate that PFAs resemble the natural metabolic-hypoxic milieu of normal development. Therefore, targeting metabolism and/or the epigenome presents a unique opportunity for rational therapy for infants with PFA ependymoma.


2020 ◽  
Author(s):  
Jenna Kropp Schmidt ◽  
Michael G. Meyer ◽  
Gregory J. Wiepz ◽  
Lindsey N. Block ◽  
Brittany M. Dusek ◽  
...  

AbstractNonhuman primates are excellent models for studying human placentation as experimental manipulations in vitro can be translated to in vivo pregnancy. Our objective was to develop macaque trophoblast stem cells (TSC) as an in vitro platform for future assessment of primate trophoblast development and function. Macaque TSC lines were generated by isolating first trimester placental villous cytotrophoblasts followed by culture in TSC medium to “reprogram” the cells to a proliferative state. TSCs grew as mononuclear colonies, whereas upon induction of syncytiotrophoblast (ST) differentiation multinuclear structures appeared, indicative of syncytium formation. Chorionic gonadotropin secretion was >4,000-fold higher in ST culture media compared to TSC media. Characteristic trophoblast hallmarks were defined in TSCs and ST including expression of C19MC miRNAs and macaque placental nonclassical MHC class I molecule, Mamu-AG. TSC differentiation to extravillous trophoblasts (EVTs) with or without the ALK-5 inhibitor A83-01 resulted in differing morphologies but similar expression of Mamu-AG and CD56 as assessed by flow cytometry, hence further refinement of relevant EVT markers is needed. Our preliminary characterization of macaque TSCs suggests that these cells represent a proliferative, self-renewing TSC population capable of differentiating to STs in vitro thereby establishing an experimental model of primate placentation.


2019 ◽  
Author(s):  
Veronique Schiffer ◽  
Laura Evers ◽  
Sander de Haas ◽  
Chahinda Ghossein ◽  
Salwan Al-Nasiry ◽  
...  

Abstract Background: Downstream remodeling of the spiral arteries (SpA) decreases utero-placental resistance drastically, allowing sustained and increased blood flow to the placenta at all circumstances. We systematically evaluated available reports to visualize adaptation of spiral arteries throughout pregnancy by ultra-sonographic measurements and evaluated when this process is completed.Methods: A systematic review and meta-analysis of spiral artery flow (pulsatility index (PI), resistance index (RI) and peak systolic velocity (PSV)) was performed. English articles were obtained from Pubmed, EMBASE and Cochrane Library and included articles were assessed on quality and risk of bias. Weighted means of Doppler indices were calculated using a random-effects model. Results: In healthy pregnancies, PI and RI decreased from 0.75 (95% CI: 0.67-0.83) and 0.49 (95% CI: 0.46-0.53) in the first trimester to 0.52 (95% CI: 0.48-0.56, p=0.003) and 0.40 (95% CI: 0.38-0.42, p=0.080) in the second trimester and to 0.49 (95% CI: 0.44-0.53, p=0.510) and 0.36 (95% CI: 0.35-0.37, p=0.307) in the third trimester, respectively. In parallel, PSV altered from 0.24 m/s (95% CI: 0.17-0.31 m/s) to 0.28 m/s (95% CI: 0.22-0.34 m/s, p=0.377) and to 0.25 m/s (95% CI: 0.21-0.28 m/s, p=0.919) in the three trimesters. In absence of second and third trimester Doppler data in complicated gestation, only a difference in PI was observed between complicated and healthy pregnancies during the first trimester (1.49 vs 0.76, p<0.001). Although individual studies have identified differences in PI between SpA located in the central part of the placental bed versus those located at its periphery, this meta-analysis could not confirm this (p=0.349).Conclusions: This review and meta-analysis concludes that an observed decrease of SpA PI and RI from the first towards the second trimester parallels the physiological trophoblast invasion converting SpA during early gestation, a process completed in the midst of the second trimester. Higher PI and RI were found in SpA of complicated pregnancies compared to healthy pregnancies, possibly reflecting suboptimal utero-placental circulation. Longitudinal studies examining comprehensively the predictive value of spiral artery Doppler for complicated pregnancies are yet to be carried out.


Reproduction ◽  
2020 ◽  
Vol 159 (1) ◽  
pp. 59-71
Author(s):  
Wen-Wen Gu ◽  
Long Yang ◽  
Xing-Xing Zhen ◽  
Yan Gu ◽  
Hua Xu ◽  
...  

The invasion of maternal decidua by extravillous trophoblast (EVT) is essential for the establishment and maintenance of pregnancy, and abnormal trophoblast invasion could lead to placenta-associated pathologies including early pregnancy loss and preeclampsia. SEC5, a component of the exocyst complex, plays important roles in cell survival and migration, but its role in early pregnancy has not been reported. Thus, the present study was performed to explore the functions of SEC5 in trophoblast cells. The results showed that SEC5 expression in human placental villi at first trimester was significantly higher than it was at the third trimester, and it was abundantly localized in the cytotrophoblast (CTB) and the trophoblastic column. SEC5 knockdown was accompanied by reduced migration and invasion in HTR-8/SVneo cells. In addition, the expression and plasma membrane distribution of integrin β1 was also decreased. Furthermore, shRNA-mediated knockdown of SEC5 inhibited the outgrowth of first trimester placental explants. SEC5 and InsP3R were colocalized in the cytoplasm of HTR-8/SVneo cells, and the cell-permeant calcium chelator BAPTA-AM could significantly inhibit HTR-8/SVneo cell invasion. The Ca2+ imaging results showed that the 10% fetal bovine serum-stimulated cytosolic calcium concentration ([Ca2+]c) was not only reduced by downregulated SEC5 but also was blocked by the InsP3R inhibitor. Furthermore, either the [Ca2+]c was buffered by BAPTA-AM or the knockdown of SEC5 disrupted HTR-8/SVneo cell F-actin stress fibers and caused cytoskeleton derangement. Taken together, our results suggest that SEC5 might be involved in regulating trophoblast cell migration and invasion through the integrin/Ca2+ signal pathway to induce cytoskeletal rearrangement.


Sign in / Sign up

Export Citation Format

Share Document