scholarly journals Platelet thrombospondin modulates endothelial cell adhesion, motility, and growth: a potential angiogenesis regulatory factor.

1990 ◽  
Vol 111 (2) ◽  
pp. 765-772 ◽  
Author(s):  
G Taraboletti ◽  
D Roberts ◽  
L A Liotta ◽  
R Giavazzi

Components of the extracellular matrix have been shown to modulate the interaction of endothelial cells with their microenvironment. Here we report that thrombospondin (TSP), an extracellular matrix component, induces adhesion and spreading of murine lung capillary (LE-II) and bovine aortic (BAEC) endothelial cells. This TSP-induced spreading was inhibited by heparin and fucoidan, known to bind the amino-terminal globular domain of the molecule. In addition, endothelial cells were induced to migrate by a gradient of soluble TSP (chemotaxis). The chemotactic response was inhibited by heparin and fucoidan, as well as by the mAb A2.5, which also binds to the amino-terminal domain. These data are in agreement with our previous observation that the TSP aminoterminal heparin binding region is responsible for the induction of tumor cell spreading and chemotactic motility. The inhibition of chemotaxis and spreading by antibodies against the beta 3 but not the beta 1 chain of the integrin receptor points to a role for the integrins in the interaction of endothelial cells with TSP. We also found that TSP modulates endothelial cell growth. When added to quiescent LE-II cells, it inhibited the mitogenic effects of serum and the angiogenic factor bFGF, in a dose-dependent manner. The inhibition of DNA synthesis detected in the mitogenic assay resulted in a true inhibition of BAEC and LE-II cell growth, as assessed by proliferation assay. This work indicates that TSP affects endothelial cell adhesion, spreading, motility and growth. TSP, therefore, has the potential to modulate the angiogenic process.

Blood ◽  
2000 ◽  
Vol 95 (8) ◽  
pp. 2586-2592
Author(s):  
Susan M. Dallabrida ◽  
Lisa A. Falls ◽  
David H. Farrell

Coagulation factor XIIIa is a transglutaminase that catalyzes covalent cross-link formation in fibrin clots. In this report, we demonstrate that factor XIIIa also mediates adhesion of endothelial cells and inhibits capillary tube formation in fibrin. The adhesive activity of factor XIIIa was not dependent on the transglutaminase activity, and did not involve the factor XIIIb-subunits. The adhesion was inhibited by 99% using a combination of monoclonal antibodies directed against integrin vβ3 and β1-containing integrins, and was dependent on Mg2+ or Mn2+. Soluble factor XIIIa also bound to endothelial cells in solution, as detected by flow cytometry. In addition, factor XIIIa inhibited endothelial cell capillary tube formation in fibrin in a dose-dependent manner. Furthermore, the extent of inhibition differed in 2 types of fibrin. The addition of 10 to 100 μg/mL factor XIIIa produced a dose-dependent reduction in capillary tube formation of 60% to 100% in γA/γA fibrin, but only a 10% to 37% decrease in γA/γ′ fibrin. These results show that factor XIIIa supports endothelial cell adhesion in an integrin-dependent manner and inhibits capillary tube formation.


Blood ◽  
2000 ◽  
Vol 95 (8) ◽  
pp. 2586-2592 ◽  
Author(s):  
Susan M. Dallabrida ◽  
Lisa A. Falls ◽  
David H. Farrell

Abstract Coagulation factor XIIIa is a transglutaminase that catalyzes covalent cross-link formation in fibrin clots. In this report, we demonstrate that factor XIIIa also mediates adhesion of endothelial cells and inhibits capillary tube formation in fibrin. The adhesive activity of factor XIIIa was not dependent on the transglutaminase activity, and did not involve the factor XIIIb-subunits. The adhesion was inhibited by 99% using a combination of monoclonal antibodies directed against integrin vβ3 and β1-containing integrins, and was dependent on Mg2+ or Mn2+. Soluble factor XIIIa also bound to endothelial cells in solution, as detected by flow cytometry. In addition, factor XIIIa inhibited endothelial cell capillary tube formation in fibrin in a dose-dependent manner. Furthermore, the extent of inhibition differed in 2 types of fibrin. The addition of 10 to 100 μg/mL factor XIIIa produced a dose-dependent reduction in capillary tube formation of 60% to 100% in γA/γA fibrin, but only a 10% to 37% decrease in γA/γ′ fibrin. These results show that factor XIIIa supports endothelial cell adhesion in an integrin-dependent manner and inhibits capillary tube formation.


1997 ◽  
Vol 8 (7) ◽  
pp. 1329-1341 ◽  
Author(s):  
N Sheibani ◽  
P J Newman ◽  
W A Frazier

Expression of thrombospondin-1 (TS1) in polyoma middle-sized T (tumor)-transformed mouse brain endothelial cells (bEND.3) restores a normal phenotype and suppresses their ability to form hemangiomas in mice. We show that TS1 expression results in complete suppression of platelet-endothelial cell adhesion molecule-1 (PECAM-1) expression and altered cell-cell interactions in bEND.3 cells. To further investigate the role of PECAM-1 in regulation of endothelial cell-cell interactions and morphogenesis, we expressed human (full length) or murine (delta 15) PECAM-1 isoforms in TS1-transfected bEND.3 (bEND/TS) cells. Expression of either human or murine PECAM-1 resulted in an enhanced ability to organize and form networks of cords on Matrigel, an effect that was specifically blocked by antibodies to PECAM-1. Anti-PECAM-1 antibodies also inhibited tube formation in Matrigel by normal human umbilical vein endothelial cells. However, PECAM-1-transfected bEND/TS cells did not regain the ability to form hemangiomas in mice and the expressed PECAM-1, unlike the endogenous PECAM-1 expressed in bEND.3 cells, failed to localize to sites of cell-cell contact. This may be, in part, attributed to the different isoforms of PECAM-1 expressed in bEND.3 cells. Using reverse transcription-polymerase chain reaction, we determined that bEND.3 cells express mRNA encoding six different PECAM-1 isoforms, the isoform lacking both exons 14 and 15 (delta 14&15) being most abundant. Expression of the murine delta 14&15 PECAM-1 isoform in bEND/TS cells resulted in a similar phenotype to that described for the full-length human or murine delta 15 PECAM-1 isoform. The delta 14&15 isoform, despite the lack of exon 14, failed to localize to sites of cell-cell contact even in clones that expressed it at very high levels. Thus, contrary to recent reports, lack of exon 14 is not sufficient to result in junctional localization of PECAM-1 isoforms in bEND/TS cells.


2006 ◽  
Vol 99 (11) ◽  
pp. 1207-1215 ◽  
Author(s):  
Aurélie Cazes ◽  
Ariane Galaup ◽  
Clémence Chomel ◽  
Marine Bignon ◽  
Nicolas Bréchot ◽  
...  

2002 ◽  
Vol 283 (4) ◽  
pp. H1282-H1291 ◽  
Author(s):  
A. W. Mulivor ◽  
H. H. Lipowsky

The binding of fluorescently labeled microspheres (FLMs, 0.1-μm diameter) coated with antibody (1a29) to ICAM-1 was studied in postcapillary venules during topical application of the chemoattractant N-formylmethionyl-leucyl-phenylalanine (fMLP). FLM adhesion to endothelial cells (ECs) increased dramatically from 50 to 150 spheres per 100-μm length of venule after superfusion of the mesentery with fMLP and equaled or exceeded levels of leukocyte (WBC) adhesion. Removal of the EC glycocalyx by micropipette infusion of the venule with heparinase increased FLM-EC adhesion to levels attained with fMLP. Subsequent application of fMLP did not increase FLM adhesion further, suggesting that the FLMs saturated all ICAM-1 binding sites. Perfusion with heparinase after suffusion with fMLP significantly increased FLM-EC adhesion above levels attained with fMLP. However, WBC adhesion fell because of possible removal of selectins necessary to maintain WBC rolling at the wall. It is concluded that the glycocalyx serves as a barrier to adhesion and that its shedding during natural activation of ECs may be an essential part of the inflammatory response.


1998 ◽  
Vol 9 (4) ◽  
pp. 701-713 ◽  
Author(s):  
Nader Sheibani ◽  
William A. Frazier

bEND.3 cells are polyoma middle T-transformed mouse brain endothelial cells that express very little or no thrombospondin-1, a natural inhibitor of angiogenesis, but express high levels of platelet endothelial cell adhesion molecule-1 (PECAM-1) that localizes to sites of cell–cell contact. Here, we have examined the role of PECAM-1 in regulation of bEND.3 cell proliferation, migration, morphogenesis, and hemangioma formation. We show that down-regulating PECAM-1 expression by antisense transfection of bEND.3 cells has a dramatic effect on their morphology, proliferation, and morphogenesis on Matrigel. There is an optimal level for PECAM-1 expression such that high levels of PECAM-1 inhibit, whereas moderate levels of PECAM-1 stimulate, endothelial cell morphogenesis. The down-regulation of PECAM-1 in bEND.3 cells resulted in reexpression of endogenous thrombospondin-1 and its antiangiogenic receptor CD36. The expression of the vascular endothelial growth factor receptors flk-1 and flt-1, as well as integrins and metalloproteinases (which are involved in angiogenesis), were also affected. These observations are consistent with the changes observed in proliferation, migration, and adhesion characteristics of the antisense-transfected bEND.3 cells as well as with their lack of ability to form hemangiomas in mice. Thus, a reciprocal relationship exists between thrombospondin-1 and PECAM-1 expression, such that these two molecules appear to be constituents of a “switch” that regulates in concert many components of the angiogenic and differentiated phenotypes of endothelial cells.


Sign in / Sign up

Export Citation Format

Share Document