scholarly journals Vitronectin receptor has a role in bone resorption but does not mediate tight sealing zone attachment of osteoclasts to the bone surface.

1991 ◽  
Vol 115 (4) ◽  
pp. 1179-1186 ◽  
Author(s):  
P T Lakkakorpi ◽  
M A Horton ◽  
M H Helfrich ◽  
E K Karhukorpi ◽  
H K Väänänen

During bone resorption, osteoclasts form a tight attachment, the sealing zone, around resorption lacunae. Vitronectin receptor has previously been shown to be expressed in osteoclasts and it has been suggested that it mediates the tight attachment at the sealing zone. In this study we have shown that glycine-arginine-glycine-aspartic acid-serine pentapeptide inhibits bone resorption by isolated osteoclasts and drastically changes the morphology of the osteoclasts. When the vitronectin receptor was localized by immunofluorescence in rat and chicken osteoclasts cultured on bone slices, it was found to be distributed throughout the osteoclast cell membrane except in the sealing zone areas. Immunoperoxidase staining of rat bone sections at the light microscopical level also revealed intense staining of the cell membrane with occasional small unstained areas, probably corresponding to the sealing zones. Immunoelectron microscopy confirmed the results obtained by light microscopy showing specific labeling only at the ruffled borders and basolateral membranes (0.82 and 2.43 gold particles/microns of membrane, respectively), but not at the sealing zone areas (0.06 gold particles/microns of membrane). Both alpha v and beta 3 subunits of the vitronectin receptor were similarly localized. These results strongly suggest that, although the vitronectin receptor is important in the function of osteoclasts, it is not mediating the final sealing zone attachment of the osteoclasts to the mineralized bone surface.

1993 ◽  
Vol 104 (3) ◽  
pp. 663-670 ◽  
Author(s):  
P.T. Lakkakorpi ◽  
M.H. Helfrich ◽  
M.A. Horton ◽  
H.K. Vaananen

The primary function of the osteoclast is that of the major cell mediating bone resorption. They are actively migrating cells but during resorption they polarize to form a specialized tight attachment structure, the sealing zone, adjacent to the mineralized bone matrix. The processes of adhesion to, and migration on, bone involves cell adhesion molecules, integrins, interacting with their ligands in bone. We have used confocal microscopy to analyse, in rat osteoclasts cultured on bone and glass substrata, the distribution of vitronectin receptor, the major integrin of osteoclasts, and cytoskeletal proteins that it may be linked to. Double staining for F-actin and vinculin, and for vinculin with talin, revealed that cytoskeletal organization differs at various activation states of osteoclasts. Microfilament structures were flat, of 1.5 microns size, and concentrated near the bone surface. The vitronectin receptor was localized both in the basolateral membrane (away from the bone surface) and in the ruffled border (adjacent to bone) in osteoclasts cultured on bone, but was detected mainly in the basolateral membrane when cultured on glass. The vitronectin receptor appeared to be condensed on small microvilli-like projections on the basolateral membrane of osteoclasts on either bone or glass and may provide a route for alternative signalling pathways to modify osteoclast behaviour, other than by influencing cell adhesion directly. The leading edges of migrating osteoclasts, and the attachment structure, a broad vinculin band, which forms before bone resorption, also expressed vitronectin receptor, particularly when the antibody against the alpha v subunit was used.(ABSTRACT TRUNCATED AT 250 WORDS)


Author(s):  
Jean-Marie Delaisse ◽  
Kent Søe ◽  
Thomas Levin Andersen ◽  
Aleksandra Maria Rojek ◽  
Niels Marcussen

The current models of osteoclastic bone resorption focus on immobile osteoclasts sitting on the bone surface and drilling a pit into the bone matrix. It recently appeared that many osteoclasts also enlarge their pit by moving across the bone surface while resorbing. Drilling a pit thus represents only the start of a resorption event of much larger amplitude. This prolonged resorption activity significantly contributes to pathological bone destruction, but the mechanism whereby the osteoclast engages in this process does not have an answer within the standard bone resorption models. Herein, we review observations that lead to envision how prolonged resorption is possible through simultaneous resorption and migration. According to the standard pit model, the “sealing zone” which surrounds the ruffled border (i.e., the actual resorption apparatus), “anchors” the ruffled border against the bone surface to be resorbed. Herein, we highlight that continuation of resorption demands that the sealing zone “glides” inside the cavity. Thereby, the sealing zone emerges as the structure responsible for orienting and displacing the ruffled border, e.g., directing resorption against the cavity wall. Importantly, sealing zone displacement stringently requires thorough collagen removal from the cavity wall - which renders strong cathepsin K collagenolysis indispensable for engagement of osteoclasts in cavity-enlargement. Furthermore, the sealing zone is associated with generation of new ruffled border at the leading edge, thereby allowing the ruffled border to move ahead. The sealing zone and ruffled border displacements are coordinated with the migration of the cell body, shown to be under control of lamellipodia at the leading edge and of the release of resorption products at the rear. We propose that bone resorption demands more attention to osteoclastic models integrating resorption and migration activities into just one cell phenotype.


2000 ◽  
Vol 268 (1) ◽  
pp. 201-209 ◽  
Author(s):  
Cécile Itzstein ◽  
Léon Espinosa ◽  
Pierre D. Delmas ◽  
Chantal Chenu

2000 ◽  
Vol 113 (3) ◽  
pp. 377-381 ◽  
Author(s):  
H.K. Vaananen ◽  
H. Zhao ◽  
M. Mulari ◽  
J.M. Halleen

Osteoclasts are multinucleated cells responsible for bone resorption. They have developed an efficient machinery for dissolving crystalline hydroxyapatite and degrading organic bone matrix rich in collagen fibers. When initiating bone resorption, osteoclasts become polarized, and three distinct membrane domains appear: a ruffled border, a sealing zone and a functional secretory domain. Simultaneously, the cytoskeleton undergoes extensive re-organisation. During this process, the actin cytoskeleton forms an attachment ring at the sealing zone, the membrane domain that anchors the resorbing cell to bone matrix. The ruffled border appears inside the sealing zone, and has several characteristics of late endosomal membrane. Extensive vesicle transport to the ruffled border delivers hydrochloric acid and proteases to an area between the ruffled border and the bone surface called the resorption lacuna. In this extracellular compartment, crystalline hydroxyapatite is dissolved by acid, and a mixture of proteases degrades the organic matrix. The degradation products of collagen and other matrix components are endocytosed, transported through the cell and exocytosed through a functional secretory domain. This transcytotic route allows osteoclasts to remove large amounts of matrix-degradation products without losing their tight attachment to underlying bone. It also facilitates further processing of the degradation products intracellularly during the passage through the cell.


1983 ◽  
Vol 2 (1) ◽  
pp. 101-120 ◽  
Author(s):  
N.D. Priest ◽  
G. Howells ◽  
D. Green ◽  
J.W. Haines

The distribution and retention of intravenously injected 241Am in the skeleton of the female rat has been investigated using autoradiographic and radiochemical techniques. The studies were designed to assess the dosimetric and toxicologic implications of an 241Am intake by man. They showed that in the rat approximately one third of the intravenously injected 241Am was deposited in the skeleton where it appeared to be retained with a long biological half-time. The studies also showed: 1241Am is initially deposited onto all types of bone surface including endosteal surfaces, periosteal surfaces and those of the vascular canals within cortical bone, but seems to be preferentially deposited onto those that are resorbing, 2 Bone accretion results in the burial of surface deposits of 241Am, 3 Bone resorption causes the removal of 241 Am from surfaces, 4 Resorbed 241Am is retained by phagocytic cells (probably macrophages) in the bone marrow, 5 The transfer of 241Am from the phagocytic cells in the marrow to adjacent bone surfaces seems to occur, (local recycling). 6 The possibility that some of the 241Am removed from the bone surfaces enters the blood and is redeposited in bone, (systemic recycling) cannot be dismissed These results show that 241Am deposition and redistribution in bone shares many characteristics with other 'bone surface-seeking radionuclides' typified by 239Pu. Consequently, it is suggested that a similar model to that used to calculate annual limits of intake for 239Pu in man would be suitable for the calculation of corresponding values for the 241Am isotopes.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1722-1722
Author(s):  
Prasenjit Guchhait ◽  
Perumal Thiagarajan ◽  
Jose A. Lopez

Abstract Sickle cell disease (SCD) affects millions of people worldwide, and is associated with significant morbidity and mortality. Although the clinical manifestations of the disease are very complex, much of the cause can be ascribed to occlusion of small vessels by the sickle red blood cells (RBCs). More than 30% of all deaths in SCD are due to the vasoocclusion, which results in ischemia, multiorgan failure and strokes. The proximate cause for vasoocclusion appears to be an increased adhesiveness of sickle cells to the vessel wall, and we postulate that the exposure of sulfatide on sickle cells accounts for their adhesive phenotype. Sulfatide binds with high affinity to many of the adhesion proteins known to be involved in cell adhesion to subendothelium and endothelium, including von Willebrand factor (VWF), thrombospondin (TSP), laminin and P-selectin. We therefore compared the expression and distribution of sulfatide in sickle cells to that in normal RBCs. When examined by flow cytometry using a previously described Alexa fluor-conjugated single-chain variable fragment (scFv) antibody, PA38, we found that sickle cells displayed more sulfatide on surface than normal RBCs (mean fluorescence 1.6±0.5 Vs. 0.9±0.3, p<0.05, n=6). When we examined sulfatide distribution by confocal microscopy using the labeled PA38, we found it to label more intensely in sickle cells than the normal RBCs and to be distributed heterogeneously, with areas of intense staining. The heterogeneous distribution suggested that the sulfatide might exist within membrane-microdomains/lipid rafts. We tested this possibility by sucrose density centrifugation of detergent lysates (1% Triton X-100) of erythrocyte ghosts from sickle and normal cells and found that sulfatide was distributed in raft fractions, as defined by being in the fractions containing the raft marker flotillin-1. Consistent with an important role for sulfatide in sickle vaso-occlusion, we found that both normal and sickle RBCs attached under flow to the surface of histamine-activated human umbilical vein endothelial cells (HUVEC). The sickle RBCs adhered more avidly, as they were able to rest higher shear stresses (1.86 and 2.5 dyne/cm2) than the normal RBCs before detaching Greater than 50% of the initial adhesion was inhibited by treatment with the anti-sulfatide scFv, PA38. We obtained similar results in terms of the greater shear resistance of sickle cells and the ability of PA38 to inhibit adhesion when we compared the adhesion of sickle and normal RBCs to surfaces coated with the adhesive ligands such as VWF (the ultra-large form) and laminin. Thus, our study elucidates an important role of red cell membrane sulfatide in sickle cell adhesion to the endothelium and to adhesive ligands, and suggests that this mechanism is important pathophysiologically in the development of sickle vaso-occlusion. Sulfatide distribution into lipid rafts may allow the formation of adhesive patches that facilitate adhesion.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 682-682 ◽  
Author(s):  
Homare Eda ◽  
Loredana Santo ◽  
Diana D Cirstea ◽  
Andrew J Yee ◽  
Tyler A Scullen ◽  
...  

Abstract A member of the Tec family kinases, Bruton’s tyrosine kinase (Btk) modulates B-cell development and activation, and plays an important role in antibody production. Interestingly, Btk and Tec (the other Tec kinase family) regulate osteoclast (OC) differentiation via Receptor Activator of Nuclear Factor κ B (RANK) signaling. Moreover, OCs derived from X-linked agammaglobulinemia (XLA) patients who harbor Btk null mutations have impaired function. Here we show that a potent and specific Btk inhibitor, CC-292 inhibits OC function in multiple myeloma (MM) patients. CC-292 is a highly selective, covalent Btk inhibitor. OC derived from MM patient monocytes were assayed with or without CC-292. Interestingly, OC function was significantly inhibited in the presence of CC-292 (100 nM and 1000 nM) as demonstrated by pit formation assay. However, mRNA expression for TRAP and Cathepsin K, two OC differentiation markers were increased in the presence of CC-292 suggesting that CC-292 inhibits OC function without inhibiting OC differentiation. OC sealing zone contributes to OC bone resorption function. Given the role of c-Src and Proline-rich tyrosine Kinase 2 (Pyk2) signaling in sealing zone formation and OC function we next evaluated CC-292’s effect on Pyk2 and c-Src. Pyk2 plays a role in OC activation and localizes to the sealing zone in OC. RANK signaling activates c-Src, which phosphorylates Pyk2. Moreover c-Src controls OC bone resorption by regulating actin organization via cortactin. Interestingly, CC-292 (100 nM) inhibited c-Src total protein, c-Src phosphorylation and Pyk2 phosphorylation. Furthermore, CC-292 (100 nM) inhibited cortactin protein and mRNA expression, and upregulated c-Cbl protein (E3 ubiquitin ligase for c-Src) expression in OC derived from MM patient monocytes with resultant inhibition of OC sealing zone formation. However, at the same low doses (100 nM) CC-292 did not show any direct in vitro effect against MM cell viability. Because carfilzomib, a proteasome inhibitor that binds irreversibly to its target, has potent anti-MM activity and also inhibits OC resorptive activity, we studied CC-292 in combination with carfilzomib. Our data suggests that carfilzomib (1.25 nM) has no impact on OC sealing zone formation but inhibits OC differentiation. CC-292 (100 nM) in combination with carfilzomib (1.25 nM) inhibited not only sealing zone formation but also OC differentiation, resulting in stronger suppression of OC function than carfilzomib alone. The combination of CC-292 (30mg/kg p.o. for 5 days per week for 6 weeks) and carfilzomib (3 mg/kg i.v. x 2 days per week for 4 weeks and 2 mg/kg i.v. x 2 days per week for 2 weeks) significantly inhibited tumor burden and myeloma cell numbers in a diffuse NOD-SCID MM model. The calvarial cells derived from these mice treated with CC-292 alone, carfilzomib alone or the combination showed higher osteocalcin mRNA (osteoblast differentiation marker) expression. A specific bone resorption marker, carboxy-terminal telopeptide collagen crosslinks (CTX) in mouse serum was significantly inhibited in CC-292 and CC-292 in combination with carfilzomib treatment groups in comparison with control mice. Furthermore, 3D microCT reconstructions showed increase in cancellous bone volume in lumbar vertebrae in mice treated with CC-292 or carfilzomib, while the combination treatment resulted in an increase in cancellous bone volume in an additive manner. These data demonstrate that the novel BTK inhibitor CC-292 inhibits OC function through inhibition of OC sealing zone formation. Moreover, CC-292 in combination with carfilzomib augments effects against the bone microenvironment with resultant anti-MM activity. Disclosures: Arastu-Kapur: Onyx Pharmaceuticals, Inc.: Employment. Evans:Celgene Avilomics Research: Employment, Equity Ownership. Singh:Celgene Avilomics Research: Employment, Equity Ownership. Kirk:Onyx Pharmaceuticals, Inc.: Employment. Westlin:Celgene Avilomics Research: Employment, Equity Ownership. Raje:Celgene: Consultancy; Millenium: Consultancy; Onyx: Consultancy; Amgen: Consultancy; Acetylon: Research Funding; Eli Lilly: Research Funding.


1999 ◽  
Vol 145 (3) ◽  
pp. 527-538 ◽  
Author(s):  
Teresa L. Burgess ◽  
Yi-xin Qian ◽  
Stephen Kaufman ◽  
Brian D. Ring ◽  
Gwyneth Van ◽  
...  

Osteoprotegerin (OPG) and OPG-ligand (OPGL) potently inhibit and stimulate, respectively, osteoclast differentiation (Simonet, W.S., D.L. Lacey, C.R. Dunstan, M. Kelley, M.-S. Chang, R. Luethy, H.Q. Nguyen, S. Wooden, L. Bennett, T. Boone, et al. 1997. Cell. 89:309–319; Lacey, D.L., E. Timms, H.-L. Tan, M.J. Kelley, C.R. Dunstan, T. Burgess, R. Elliott, A. Colombero, G. Elliott, S. Scully, et al. 1998. Cell. 93: 165–176), but their effects on mature osteoclasts are not well understood. Using primary cultures of rat osteoclasts on bone slices, we find that OPGL causes approximately sevenfold increase in total bone surface erosion. By scanning electron microscopy, OPGL-treated osteoclasts generate more clusters of lacunae on bone suggesting that multiple, spatially associated cycles of resorption have occurred. However, the size of individual resorption events are unchanged by OPGL treatment. Mechanistically, OPGL binds specifically to mature OCs and rapidly (within 30 min) induces actin ring formation; a marked cytoskeletal rearrangement that necessarily precedes bone resorption. Furthermore, we show that antibodies raised against the OPGL receptor, RANK, also induce actin ring formation. OPGL-treated mice exhibit increases in blood ionized Ca++ within 1 h after injections, consistent with immediate OC activation in vivo. Finally, we find that OPG blocks OPGL's effects on both actin ring formation and bone resorption. Together, these findings indicate that, in addition to their effects on OC precursors, OPGL and OPG have profound and direct effects on mature OCs and indicate that the OC receptor, RANK, mediates OPGL's effects.


1978 ◽  
Vol 79 (2) ◽  
pp. 546-566 ◽  
Author(s):  
L Gerace ◽  
A Blum ◽  
G Blobel

This laboratory has previously isolated a fraction from rat liver nuclei consisting of nuclear pore complexes associated with the proteinaceous lamina which underlies the inner nuclear membrane. Using protein eluted from sodium dodecyl sulfate (SDS) gels, we have prepared antibodies in chickens to each of the three predominant pore complex-lamina bands. Ouchterlony double diffusion analysis shows that each of these individual bands cross-reacts strongly with all three antisera. In immunofluorescence localization performed on tissue culture cells with these antibodies, we obtain a pattern of intense staining at the periphery of the interphase nucleus, with little or no cytoplasmic reaction. Electron microscope immunoperoxidase staining of rat liver nuclei with these antibodies labels exclusively the nuclear periphery. Furthermore, reaction occurs in areas which contain the lamina, but not at the pore complexes. While our isolation procedure extracts the internal contents of nuclei completely, semiquantitative Ouchterlony analysis shows that it releases negligible amounts of these lamina antigens. Considered together, our results indicate that these three bands represent major components of a peripheral nuclear lamina, and are not structural elements of an internal "nuclear protein matrix." Fluorescence microscopy shows that the perinuclear interphase localization of these lamina proteins undergoes dramatic changes during mitosis. Concomitant with nuclear envelope disassembly in prophase, these antigens assume a diffuse localization throughout the cell. This distribution persists until telophase, when the antigens become progressively and completely localized at the surface of the daughter chromosome masses. We propose that the lamina is a biological polymer which can undergo reversible disassembly during mitosis.


Endocrinology ◽  
2001 ◽  
Vol 142 (4) ◽  
pp. 1678-1681 ◽  
Author(s):  
Neil W. A. McGowan ◽  
Emily J. Walker ◽  
Heather Macpherson ◽  
Stuart H. Ralston ◽  
Miep H. Helfrich

Abstract Osteoclast precursors reach sites of osteoclast formation and remodelling via the vasculature and are therefore destined to encounter endothelium before migrating to the bone surface. Here we investigated the hypothesis that endothelium may be involved in the regulation of osteoclast precursor recruitment to sites of bone resorption. Osteoclast precursors in human peripheral blood were identified by their ability to form mature osteoclasts in 21-day cultures supplemented with RANKLigand, M-CSF, 1,25(OH)2-vitamin D3, dexamethasone and prostaglandin E2. Under control conditions few osteoclast precursors adhered to endothelial cells (the human bone marrow-derived endothelial cell line BMEC-1). However, BMEC-1 cells treated with the resorption stimulating cytokines IL-1β and TNFα depleted the PBMC population of all osteoclast precursors. These results provide the first evidence that osteoclast precursors can adhere to endothelium and suggest that endothelium could play an important role in the recruitment of osteoclast precursors to sites of bone resorption.


Sign in / Sign up

Export Citation Format

Share Document