scholarly journals Cytokine-Activated Endothelium Recruits Osteoclast Precursors

Endocrinology ◽  
2001 ◽  
Vol 142 (4) ◽  
pp. 1678-1681 ◽  
Author(s):  
Neil W. A. McGowan ◽  
Emily J. Walker ◽  
Heather Macpherson ◽  
Stuart H. Ralston ◽  
Miep H. Helfrich

Abstract Osteoclast precursors reach sites of osteoclast formation and remodelling via the vasculature and are therefore destined to encounter endothelium before migrating to the bone surface. Here we investigated the hypothesis that endothelium may be involved in the regulation of osteoclast precursor recruitment to sites of bone resorption. Osteoclast precursors in human peripheral blood were identified by their ability to form mature osteoclasts in 21-day cultures supplemented with RANKLigand, M-CSF, 1,25(OH)2-vitamin D3, dexamethasone and prostaglandin E2. Under control conditions few osteoclast precursors adhered to endothelial cells (the human bone marrow-derived endothelial cell line BMEC-1). However, BMEC-1 cells treated with the resorption stimulating cytokines IL-1β and TNFα depleted the PBMC population of all osteoclast precursors. These results provide the first evidence that osteoclast precursors can adhere to endothelium and suggest that endothelium could play an important role in the recruitment of osteoclast precursors to sites of bone resorption.

1993 ◽  
Vol 177 (6) ◽  
pp. 1809-1814 ◽  
Author(s):  
D D Taub ◽  
A R Lloyd ◽  
K Conlon ◽  
J M Wang ◽  
J R Ortaldo ◽  
...  

The human cytokine interferon-inducible protein 10 (IP-10) is a small glycoprotein secreted by activated T cells, monocytes, endothelial cells, and keratinocytes, and is structurally related to a family of chemotactic cytokines called chemokines. Although this protein is present in sites of delayed-type hypersensitivity reactions and lepromatous leprosy lesions, the biological activity of IP-10 remains unknown. We report here that recombinant human IP-10 stimulated significant in vitro chemotaxis of human peripheral blood monocytes but not neutrophils. Recombinant human IP-10 also stimulated chemotaxis of stimulated, but not unstimulated, human peripheral blood T lymphocytes. Phenotypic analysis of the stimulated T cell population responsive to IP-10 demonstrated that stimulated CD4+ and CD29+ T cells migrated in response to IP-10. This resembles the biological activity of the previously described T cell chemoattractant RANTES. Using an endothelial cell adhesion assay, we demonstrated that stimulated T cells pretreated with optimal doses of IP-10 exhibited a greatly enhanced ability to bind to an interleukin 1-treated endothelial cell monolayer. These results demonstrate that the IP-10 gene encodes for an inflammatory mediator that specifically stimulates the directional migration of T cells and monocytes as well as potentiates T cell adhesion to endothelium.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1982
Author(s):  
Wataru Ariyoshi ◽  
Shiika Hara ◽  
Ayaka Koga ◽  
Yoshie Nagai-Yoshioka ◽  
Ryota Yamasaki

Although the anti-tumor and anti-infective properties of β-glucans have been well-discussed, their role in bone metabolism has not been reviewed so far. This review discusses the biological effects of β-glucans on bone metabolisms, especially on bone-resorbing osteoclasts, which are differentiated from hematopoietic precursors. Multiple immunoreceptors that can recognize β-glucans were reported to be expressed in osteoclast precursors. Coordinated co-stimulatory signals mediated by these immunoreceptors are important for the regulation of osteoclastogenesis and bone remodeling. Curdlan from the bacterium Alcaligenes faecalis negatively regulates osteoclast differentiation in vitro by affecting both the osteoclast precursors and osteoclast-supporting cells. We also showed that laminarin, lichenan, and glucan from baker’s yeast, as well as β-1,3-glucan from Euglema gracilisas, inhibit the osteoclast formation in bone marrow cells. Consistent with these findings, systemic and local administration of β-glucan derived from Aureobasidium pullulans and Saccharomyces cerevisiae suppressed bone resorption in vivo. However, zymosan derived from S. cerevisiae stimulated the bone resorption activity and is widely used to induce arthritis in animal models. Additional research concerning the relationship between the molecular structure of β-glucan and its effect on osteoclastic bone resorption will be beneficial for the development of novel treatment strategies for bone-related diseases.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jin-Ran Chen ◽  
Haijun Zhao ◽  
Umesh D. Wankhade ◽  
Sree V. Chintapalli ◽  
Can Li ◽  
...  

AbstractThe G protein-coupled receptor 109 A (GPR109A) is robustly expressed in osteoclastic precursor macrophages. Previous studies suggested that GPR109A mediates effects of diet-derived phenolic acids such as hippuric acid (HA) and 3-(3-hydroxyphenyl) propionic acid (3-3-PPA) on promoting bone formation. However, the role of GPR109A in metabolic bone homeostasis and osteoclast differentiation has not been investigated. Using densitometric, bone histologic and molecular signaling analytic methods, we uncovered that bone mass and strength were significantly higher in tibia and spine of standard rodent diet weaned 4-week-old and 6-month-old GPR109A gene deletion (GPR109A−/−) mice, compared to their wild type controls. Osteoclast numbers in bone and in ex vivo bone marrow cell cultures were significantly decreased in GPR109A−/− mice compared to wild type controls. In accordance with these data, CTX-1 in bone marrow plasma and gene expression of bone resorption markers (TNFα, TRAP, Cathepsin K) were significantly decreased in GPR109A−/− mice, while on the other hand, P1NP was increased in serum from both male and female GPR109A−/− mice compared to their respective controls. GPR109A deletion led to suppressed Wnt/β-catenin signaling in osteoclast precursors to inhibit osteoclast differentiation and activity. Indeed, HA and 3-3-PPA substantially inhibited RANKL-induced GPR109A expression and Wnt/β-catenin signaling in osteoclast precursors and osteoclast differentiation. Resultantly, HA significantly inhibited bone resorption and increased bone mass in wild type mice, but had no additional effects on bone in GPR109A−/− mice compared with their respective untreated control mice. These results suggest an important role for GPR109A during osteoclast differentiation and bone resorption mediating effects of HA and 3-3-PPA on inhibiting bone resorption during skeletal development.


1991 ◽  
Vol 114 (3) ◽  
pp. 557-565 ◽  
Author(s):  
K Miyake ◽  
K Medina ◽  
K Ishihara ◽  
M Kimoto ◽  
R Auerbach ◽  
...  

Two new mAbs (M/K-1 and M/K-2) define an adhesion molecule expressed on stromal cell clones derived from murine bone marrow. The protein is similar in size to a human endothelial cell adhesion molecule known as VCAM-1 or INCAM110. VCAM-1 is expressed on endothelial cells in inflammatory sites and recognized by the integrin VLA-4 expressed on lymphocytes and monocytes. The new stromal cell molecule is a candidate ligand for the VLA-4 expressed on immature B lineage lymphocytes and a possible homologue of human VCAM-1. We now report additional similarities in the distribution, structure, and function of these proteins. The M/K antibodies detected large cells in normal bone marrow, as well as rare cells in other tissues. The antigen was constitutively expressed and functioned as a cell adhesion molecule on cultured murine endothelial cells. It correlated with the presence of mRNA which hybridized to a human VCAM-1 cDNA probe. Partial NH2 terminal amino acid sequencing of the murine protein revealed similarities to VCAM-1 and attachment of human lymphoma cells to murine endothelial cell lines was inhibited by the M/K antibodies. All of these observations suggest that the murine and human cell adhesion proteins may be related. The antibodies selectively interfered with B lymphocyte formation when included in long term bone marrow cultures. Moreover, they caused rapid detachment of lymphocytes from the adherent layer when added to preestablished cultures. The VCAM-like cell adhesion molecule on stromal cells and VLA-4 on lymphocyte precursors may both be important for B lymphocyte formation.


1991 ◽  
Vol 137 (1) ◽  
pp. 150-163 ◽  
Author(s):  
Caroline O.S. Savage ◽  
Christopher C.W. Hughes ◽  
R.Blake Pepinsky ◽  
Barbara P. Wallner ◽  
Arnold S. Freedman ◽  
...  

1999 ◽  
Vol 112 (21) ◽  
pp. 3657-3666 ◽  
Author(s):  
T. Laitala-Leinonen ◽  
C. Lowik ◽  
S. Papapoulos ◽  
H.K. Vaananen

The role of proton transport and production in osteoclast differentiation was studied in vitro by inhibiting the transcription/translation of carbonic anhydrase II (CA II) and vacuolar H(+)-ATPase (V-ATPase) by antisense RNA molecules. Antisense RNAs targeted against CA II, or the 16 kDa or 60 kDa subunit of V-ATPase were used to block the expression of the specific proteins. A significant decrease in bone resorption rate and TRAP-positive osteoclast number was seen in rat bone marrow cultures and fetal mouse metacarpal cultures after antisense treatment. Intravacuolar acidification in rat bone marrow cells was also significantly decreased after antisense treatment. The CA II antisense RNA increased the number of TRAP-positive mononuclear cells, suggesting inhibition of osteoclast precursor fusion. Antisense molecules decreased the number of monocytes and macrophages, but increased the number of granulocytes in marrow cultures. GM-CSF, IL-3 and IL-6 were used to stimulate haematopoietic stem cell differentiation. The 16 kDa V-ATPase antisense RNA abolished the stimulatory effect of GM-CSF, IL-3 and IL-6 on TRAP-positive osteoclast formation, but did not affect the formation of monocytes and macrophages after IL-3 treatment, or the formation of granulocytes after IL-6 treatment. These results suggest that CA II and V-ATPase are needed, not only for the actual resorption, but also for osteoclast formation in vitro.


2001 ◽  
Vol 85 (02) ◽  
pp. 250-255 ◽  
Author(s):  
Muhit Ozcan ◽  
Colleen Morton ◽  
Anna Solovey ◽  
Luke Dandelet ◽  
Ronald Bach ◽  
...  

SummaryUsing a novel whole blood assay, we recently demonstrated that tissue factor procoagulant activity (TF PCA) is present in normal individuals. Preliminary experiments suggested that this activity is localized in the mononuclear cell fraction. Postulating that whole blood TF PCA would therefore be undetectable when monocytes and neutrophils are absent from peripheral blood, we assayed TF PCA during the peri-transplant period in 15 consecutive patients undergoing allogeneic (n = 12) or autologous (n = 3) bone marrow transplantation (BMT) or peripheral blood stem cell transplantation (PBSCT). Baseline (pre-transplant) mean TF PCA was higher in patients compared to normal controls (P <0.005). Unexpectedly, although TF PCA during the period of profound aplasia was significantly reduced compared to baseline (p <0.05), fully 55% of the initial activity remained detectable. During the engraftment phase, TF PCA returned to pre-transplant levels, with a linear correlation between monocyte counts and TF PCA (r = 0.63). In contrast to normal whole blood, incubation of aplastic samples with E. Coli lipopolysaccharide ex vivo failed to induce TF PCA. Throughout the period of study – but especially during the aplastic phase – the absolute number of circulating endothelial cells (CECs) that were TF antigen-positive was increased compared to normals (P <0.001). However, removal of these cells from whole blood samples failed to significantly diminish total TF PCA indicating that CECs alone could not account for the detectable TF PCA during aplasia. We conclude that neither circulating mature myelo-monocytic cells nor endothelial cells can account for all the functionally intact TF in peripheral blood. Further studies are needed to identify the other source(s) of TF PCA.


1987 ◽  
Author(s):  
F Liote ◽  
M P Wautier ◽  
E Savariau ◽  
H Setiadi ◽  
J L Wautier

Human peripheral blood monocytes and macrophages possess factors which are capable of inhibiting or stimulating endothelial cell proliferation. We have further explored if such activity is due to cytotoxic effects of monocytes. Normal mononuclear cells were isolated first by density gradient. Monocytes were then purified by three different techniques: 1) counter centrifugation elutriation (CCE) (Beckman) 2) selective adhesion to gelatin-plasma (GPI) 3) selective adhesion to fibronectin (Fn). Cytotoxicity was estimated by counting the release of 51cr used to label the human umbilical vein endothelial cells (HUVE) prior to the addition of monocytes. Whilst [3H] thymidine incorporation by HUVE permitted us to measure the effect of monocytes on the growth of the endothelial cells. Monocytes were incubated with HUVE (12×103) for 24 to 36h at various concentrations '(1.5-12×103). No cytotoxic effect could be demonstrated but an inhibition of [3h] thymidine uptake was observed and was dependent upon monocytes concentration. Monocytes isolated on GP1 exhibited a significantly higher inhibitory effect (p<0.05) compared to those purified on Fn or by CCE.(GP1: 85±6%, Fn:58±6%, CCE:67±5%). These results indicated t*hat normal monocytes can inhibit endothelial cell proliferation. This activity appeared to be higher when monocytes were isolated on GP1 which suggest that the adhesion on this surface could stimulate monocytes not only by its fibronectin receptor. This inhibitory activity of monocyte on endothelial cells proliferation could be different in patients with vascular disorders.


Sign in / Sign up

Export Citation Format

Share Document