scholarly journals Suppression of kinesin expression in cultured hippocampal neurons using antisense oligonucleotides.

1992 ◽  
Vol 117 (3) ◽  
pp. 595-606 ◽  
Author(s):  
A Ferreira ◽  
J Niclas ◽  
R D Vale ◽  
G Banker ◽  
K S Kosik

Kinesin, a microtubule-based force-generating molecule, is thought to translocate organelles along microtubules. To examine the function of kinesin in neurons, we sought to suppress kinesin heavy chain (KHC) expression in cultured hippocampal neurons using antisense oligonucleotides and study the phenotype of these KHC "null" cells. Two different antisense oligonucleotides complementary to the KHC sequence reduced the protein levels of the heavy chain by greater than 95% within 24 h after application and produced identical phenotypes. After inhibition of KHC expression for 24 or 48 h, neurons extended an array of neurites often with one neurite longer than the others; however, the length of all these neurites was significantly reduced. Inhibition of KHC expression also altered the distribution of GAP-43 and synapsin I, two proteins thought to be transported in association with membranous organelles. These proteins, which are normally localized at the tips of growing neurites, were confined to the cell body in antisense-treated cells. Treatment of the cells with the corresponding sense oligonucleotides affected neither the distribution of GAP-43 and synapsin I, nor the length of neurites. A full recovery of neurite length occurred after removal of the antisense oligonucleotides from the medium. These data indicate that KHC plays a role in the anterograde translocation of vesicles containing GAP-43 and synapsin I. A deficiency in vesicle delivery may also explain the inhibition of neurite outgrowth. Despite the inhibition of KHC and the failure of GAP-43 and synapsin I to move out of the cell body, hippocampal neurons can extend processes and acquire as asymmetric morphology.

1998 ◽  
Vol 18 (1) ◽  
pp. 93-103 ◽  
Author(s):  
Olaf Mundigl ◽  
Gian-Carlo Ochoa ◽  
Carol David ◽  
Vladimir I. Slepnev ◽  
Alexander Kabanov ◽  
...  

2012 ◽  
Vol 123 (6) ◽  
pp. 904-910 ◽  
Author(s):  
Hideaki Yamamoto ◽  
Takanori Demura ◽  
Mayu Morita ◽  
Gary A. Banker ◽  
Takashi Tanii ◽  
...  

2002 ◽  
Vol 159 (3) ◽  
pp. 499-508 ◽  
Author(s):  
Phillip Lamoureux ◽  
Gordon Ruthel ◽  
Robert E. Buxbaum ◽  
Steven R. Heidemann

Here we asked whether applied mechanical tension would stimulate undifferentiated minor processes of cultured hippocampal neurons to become axons and whether tension could induce a second axon in an already polarized neuron. Experimental tension applied to minor processes produced extensions that demonstrated axonal character, regardless of the presence of an existing axon. Towed neurites showed a high rate of spontaneous growth cone advance and could continue to grow out for 1–3 d after towing. The developmental course of experimental neurites was found to be similar to that of unmanipulated spontaneous axons. Furthermore, the experimentally elongated neurites showed compartmentation of the axonal markers dephospho-tau and L-1 in towed outgrowth after 24 h. Extension of a second axon from an already polarized neuron does not lead to the loss of the spontaneous axon either immediately or after longer term growth. In addition, we were able to initiate neurites de novo that subsequently acquired axonal character even though spontaneous growth cone advance began while the towed neurite was still no longer than its sibling processes. This suggests that tension rather than the achievement of a critical neurite length determined axonal specification.


1992 ◽  
Vol 137 (1) ◽  
pp. 129-132 ◽  
Author(s):  
M.Van Lookeren Campagne ◽  
C.G. Dotti ◽  
A.J. Verkleij ◽  
W.H. Gispen ◽  
A.B. Oestreicher

1989 ◽  
Vol 109 (6) ◽  
pp. 3085-3094 ◽  
Author(s):  
P W Baas ◽  
M M Black ◽  
G A Banker

Microtubules in the dendrites of cultured hippocampal neurons are of nonuniform polarity orientation. About half of the microtubules have their plus ends oriented distal to the cell body, and the other half have their minus ends distal; in contrast, microtubules in the axon are of uniform polarity orientation, all having their plus ends distal (Baas, P.W., J.S. Deitch, M. M. Black, and G. A. Banker. 1988. Proc. Natl. Acad. Sci. USA. 85:8335-8339). Here we describe the developmental changes that give rise to the distinct microtubule patterns of axons and dendrites. Cultured hippocampal neurons initially extend several short processes, any one of which can apparently become the axon (Dotti, C. G., and G. A. Banker. 1987. Nature [Lond.]. 330:477-479). A few days after the axon has begun its rapid growth, the remaining processes differentiate into dendrites (Dotti, C. G., C. A. Sullivan, and G. A. Banker. 1988. J. Neurosci. 8:1454-1468). The polarity orientation of the microtubules in all of the initial processes is uniform, with plus ends distal to the cell body, even through most of these processes will become dendrites. This uniform microtubule polarity orientation is maintained in the axon at all stages of its growth. The polarity orientation of the microtubules in the other processes remains uniform until they begin to grow and acquire the morphological characteristics of dendrites. It is during this period that microtubules with minus ends distal to the cell body first appear in these processes. The proportion of minus end-distal microtubules gradually increases until, by 7 d in culture, about equal numbers of dendritic microtubules are oriented in each direction. Thus, the establishment of regional differences in microtubule polarity orientation occurs after the initial polarization of the neuron and is temporally correlated with the differentiation of the dendrites.


2014 ◽  
Vol 92 (8) ◽  
pp. 1000-1009 ◽  
Author(s):  
Paulina S. Rojas ◽  
David Neira ◽  
Mauricio Muñoz ◽  
Sergio Lavandero ◽  
Jenny L. Fiedler

2008 ◽  
Vol 295 (4) ◽  
pp. E938-E946 ◽  
Author(s):  
Hui Sheng ◽  
Tingting Sun ◽  
Binhai Cong ◽  
Ping He ◽  
Yanmin Zhang ◽  
...  

Corticotropin-releasing hormone (CRH) has been shown to exhibit various functions in hippocampus. In the present study, we examined the effect of CRH on the expression of serum/glucocorticoid-inducible protein kinase-1 (SGK-1), a novel protein kinase, in primary cultured hippocampal neurons. A dose-dependent increase in mRNA and protein levels of SGK-1 as well as frequency of SGK-1-positive neurons occurred upon exposure to CRH (1 pmol/l to 10 nmol/l). These effects can be reversed by the specific CRH-R1 antagonist antalarmin but not by the CRH-R2 antagonist astressin 2B. Blocking adenylate cyclase (AC) activity with SQ22536 and PKA with H89 completely prevented CRH-induced mRNA and protein expression of SGK-1. Blockage of PLC or PKC did not block CRH-induced SGK-1 expression. Our results suggest that CRH act on CRH-R1 to stimulate SGK-1 mRNA and protein expression in cultured hippocampal neurons via a mechanism that is involved in AC/PKA signaling pathways.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yanqi Li ◽  
Ping Deng ◽  
Chunhai Chen ◽  
Qinlong Ma ◽  
Huifeng Pi ◽  
...  

Background: With the global popularity of communication devices such as mobile phones, there are increasing concerns regarding the effect of radiofrequency electromagnetic radiation (RF-EMR) on the brain, one of the most important organs sensitive to RF-EMR exposure at 1,800 MHz. However, the effects of RF-EMR exposure on neuronal cells are unclear. Neurite outgrowth plays a critical role in brain development, therefore, determining the effects of 1,800 MHz RF-EMR exposure on neurite outgrowth is important for exploring its effects on brain development.Objectives: We aimed to investigate the effects of 1,800 MHz RF-EMR exposure for 48 h on neurite outgrowth in neuronal cells and to explore the associated role of the Rap1 signaling pathway.Material and Methods: Primary hippocampal neurons from C57BL/6 mice and Neuro2a cells were exposed to 1,800 MHz RF-EMR at a specific absorption rate (SAR) value of 4 W/kg for 48 h. CCK-8 assays were used to determine the cell viability after 24, 48, and 72 h of irradiation. Neurite outgrowth of primary hippocampal neurons (DIV 2) and Neuro2a cells was observed with a 20 × optical microscope and recognized by ImageJ software. Rap1a and Rap1b gene expressions were detected by real-time quantitative PCR. Rap1, Rap1a, Rap1b, Rap1GAP, and p-MEK1/2 protein expressions were detected by western blot. Rap1-GTP expression was detected by immunoprecipitation. The role of Rap1-GTP was assessed by transfecting a constitutively active mutant plasmid (Rap1-Gly_Val-GFP) into Neuro2a cells.Results: Exposure to 1,800 MHz RF-EMR for 24, 48, and 72 h at 4 W/kg did not influence cell viability. The neurite length, primary and secondary neurite numbers, and branch points of primary mouse hippocampal neurons were significantly impaired by 48-h RF-EMR exposure. The neurite-bearing cell percentage and neurite length of Neuro2a cells were also inhibited by 48-h RF-EMR exposure. Rap1 activity was inhibited by 48-h RF-EMR with no detectable alteration in either gene or protein expression of Rap1. The protein expression of Rap1GAP increased after 48-h RF-EMR exposure, while the expression of p-MEK1/2 protein decreased. Overexpression of constitutively active Rap1 reversed the decrease in Rap1-GTP and the neurite outgrowth impairment in Neuro2a cells induced by 1,800 MHz RF-EMR exposure for 48 h.Conclusion: Rap1 activity and related signaling pathways are involved in the disturbance of neurite outgrowth induced by 48-h 1,800 MHz RF-EMR exposure. The effects of RF-EMR exposure on neuronal development in infants and children deserve greater focus.


Sign in / Sign up

Export Citation Format

Share Document