scholarly journals Clathrin heavy chain is required for pinocytosis, the presence of large vacuoles, and development in Dictyostelium.

1992 ◽  
Vol 118 (6) ◽  
pp. 1371-1377 ◽  
Author(s):  
T J O'Halloran ◽  
R G Anderson

To investigate the intracellular role of the clathrin heavy chain in living cells, we have used "antisense" RNA to engineer mutant Dictyostelium discoideum cells that are severely deficient in clathrin heavy chain expression. Immunoblots stained with an anti-clathrin heavy chain antiserum revealed that mutant cells contained undetectable amounts of clathrin heavy chain protein. Similarly, Northern blots showed an absence of clathrin heavy chain mRNA. Clathrin heavy chain-deficient Dictyostelium cells were viable, but exhibited growth rates twofold slower than parental cells. Whereas many morphological features of the mutant cells were normal, mutant cells lacked coated pits and coated vesicles. Clathrin-deficient cells were also missing large translucent vacuoles that serve as endosomes and contractile vacuoles. In the absence of clathrin heavy chain, mutant cells displayed three distinct functional defects: (a) impairment in endocytosis of fluid phase markers, but competence in another endocytic pathway, the phagocytosis of solid particles; (b) defects in osmoregulation; and (c) inability to complete the starvation-induced development cycle.

1987 ◽  
Vol 105 (2) ◽  
pp. 679-689 ◽  
Author(s):  
K Sandvig ◽  
S Olsnes ◽  
O W Petersen ◽  
B van Deurs

Acidification of the cytosol of a number of different cell lines strongly reduced the endocytic uptake of transferrin and epidermal growth factor. The number of transferrin binding sites at the cell surface was increased in acidified cells. Electron microscopic studies showed that the number of coated pits at the cell surface was not reduced in cells with acidified cytosol. Experiments with transferrin-horseradish peroxidase conjugates and a monoclonal anti-transferrin receptor antibody demonstrated that transferrin receptors were present in approximately 75% of the coated pits both in control cells and in cells with acidified cytosol. The data therefore indicate that the reason for the reduced endocytic uptake of transferrin at internal pH less than 6.5 is an inhibition of the pinching off of coated vesicles. In contrast, acidification of the cytosol had only little effect on the uptake of ricin and the fluid phase marker lucifer yellow. Ricin endocytosed by cells with acidified cytosol exhibited full toxic effect on the cells. Although the pathway of this uptake in acidified cells remains uncertain, some coated pits may still be involved. However, the data are also consistent with the possibility that an alternative endocytic pathway involving smooth (uncoated) pits exists.


2003 ◽  
Vol 163 (2) ◽  
pp. 231-236 ◽  
Author(s):  
Antony P. Jackson ◽  
Alexander Flett ◽  
Carl Smythe ◽  
Lindsay Hufton ◽  
Frank R. Wettey ◽  
...  

Endocytic cargo such as the transferrin receptor is incorporated into clathrin-coated pits by associating, via tyrosine-based motifs, with the AP2 complex. Cargo–AP2 interactions occur via the μ2 subunit of AP2, which needs to be phosphorylated for endocytosis to occur. The most likely role for μ2 phosphorylation is in cargo recruitment because μ2 phosphorylation enhances its binding to internalization motifs. Here, we investigate the control of μ2 phosphorylation. We identify clathrin as a specific activator of the μ2 kinase and, in permeabilized cells, we show that ligand sequestration, driven by exogenous clathrin, results in elevated levels of μ2 phosphorylation. Furthermore, we show that AP2 containing phospho-μ2 is mainly associated with assembled clathrin in vivo, and that the level of phospho-μ2 is strongly reduced in a chicken B cell line depleted of clathrin heavy chain. Our results imply a central role for clathrin in the regulation of cargo selection via the modulation of phospho-μ2 levels.


2004 ◽  
Vol 15 (2) ◽  
pp. 861-869 ◽  
Author(s):  
Yaya Lefkir ◽  
Marilyne Malbouyres ◽  
Daniel Gotthardt ◽  
Adrian Ozinsky ◽  
Sophie Cornillon ◽  
...  

The best described function of the adaptor complex-1 (AP-1) is to participate in the budding of clathrin-coated vesicles from the trans-Golgi network and endosomes. Here, we show that AP-1 is also localized to phagocytic cups in murine macrophages as well as in Dictyostelium amoebae. AP-1 is recruited to phagosomal membranes at this early stage of phagosome formation and rapidly dissociates from maturing phagosomes. To establish the role of AP-1 in phagocytosis, we made used of Dictyostelium mutant cells (apm1-cells) disrupted for AP-1 medium chain. In this mutant, phagocytosis drops by 60%, indicating that AP-1 is necessary for efficient phagocytosis. Furthermore, phagocytosis in apm1-cells is more affected for large rather than small particles, and cells exhibiting incomplete engulfment are then often observed. This suggests that AP-1 could participate in the extension of the phagocytic cup. Interestingly, macropinocytosis, a process dedicated to fluid-phase endocytosis and related to phagocytosis, is also impaired in apm1-cells. In summary, our data suggest a new role of AP-1 at an early stage of phagosome and macropinosome formation.


1994 ◽  
Vol 126 (2) ◽  
pp. 343-352 ◽  
Author(s):  
T Ruscetti ◽  
J A Cardelli ◽  
M L Niswonger ◽  
T J O'Halloran

The clathrin heavy chain is a major component of clathrin-coated vesicles that function in selective membrane traffic in eukaryotic cells. We disrupted the clathrin heavy chain gene (chcA) in Dictyostelium discoideum to generate a stable clathrin heavy chain-deficient cell line. Measurement of pinocytosis in the clathrin-minus mutant revealed a four-to five-fold deficiency in the internalization of fluid-phase markers. Once internalized, these markers recycled to the cell surface of mutant cells at wild-type rates. We also explored the involvement of clathrin heavy chain in the trafficking of lysosomal enzymes. Pulse chase analysis revealed that clathrin-minus cells processed most alpha-mannosidase to mature forms, however, approximately 20-25% of the precursor molecules remained uncleaved, were missorted, and were rapidly secreted by the constitutive secretory pathway. The remaining intracellular alpha-mannosidase was successfully targeted to mature lysosomes. Standard secretion assays showed that the rate of secretion of alpha-mannosidase was significantly less in clathrin-minus cells compared to control cells in growth medium. Interestingly, the secretion rates of another lysosomal enzyme, acid phosphatase, were similar in clathrin-minus and wild-type cells. Like wild-type cells, clathrin-minus mutants responded to starvation conditions with increased lysosomal enzyme secretion. Our study of the mutant cells provide in vivo evidence for roles for the clathrin heavy chain in (a) the internalization of fluid from the plasma membrane; (b) sorting of hydrolase precursors from the constitutive secretory pathway to the lysosomal pathway; and (c) secretion of mature hydrolases from lysosomes to the extracellular space.


2010 ◽  
Vol 9 (3) ◽  
pp. 387-392 ◽  
Author(s):  
Ewan W. Smith ◽  
Wanessa C. Lima ◽  
Steve J. Charette ◽  
Pierre Cosson

ABSTRACT Dictyostelium discoideum amoebae have been used extensively to study the structure and dynamics of the endocytic pathway. Here, we show that while the general structure of the endocytic pathway is maintained in starved cells, its dynamics rapidly slow down. In addition, analysis of apm3 and lvsB mutants reveals that the functional organization of the endocytic pathway is profoundly modified upon starvation. Indeed, in these mutant cells, some of the defects observed in rich medium persist in starved cells, notably an abnormally slow transfer of endocytosed material between endocytic compartments. Other parameters, such as endocytosis of the fluid phase or the rate of fusion of postlysosomes to the cell surface, vary dramatically upon starvation. Studying the endocytic pathway in starved cells can provide a different perspective, allowing the primary (invariant) defects resulting from specific mutations to be distinguished from their secondary (conditional) consequences.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Rocco Romagnuolo ◽  
Nabil G Seidah ◽  
Marlys L Koschinsky

Elevated levels of lipoprotein(a) (Lp(a)) have been identified as an independent and causal risk factor for coronary heart disease. Lp(a) consists of an LDL-like moiety covalently linked to the unique glycoprotein apolipoprotein(a) (apo(a)). The mechanism by which Lp(a) is catabolized is currently unknown, but may form the basis for the development of drug therapy to reduce high levels of plasma Lp(a). Although the role of the LDL receptor (LDLR) in Lp(a) catabolism is controversial, recent evidence has shown that Lp(a) levels are significantly reduced with an antibody against proprotein convertase subtilisin kexin type 9 (PCSK9) in patients with hypercholesterolemia receiving statin therapy. Therefore, we explored the role of PCSK9 in Lp(a)/apo(a) internalization by hepatic cells. Lp(a) or apo(a) internalization is significantly reduced in HepG2 (human hepatoma) cells either by overexpressing PCSK9 or by treatment with purified PCSK9. The ability of Lp(a) and apo(a) to be internalized was significantly reduced in the presence of the lysine analogue, ε-ACA, indicating lysine-dependent interactions with cellular receptors. Mutation of the strong lysine binding site in a recombinant apo(a) variant resulted in a reduced ability to be internalized. While LDL can bind to PCSK9 and inhibit its ability to degrade the LDLR, we found that Lp(a) lacked these properties. Interestingly, overexpressing the LDLR on HepG2 cells significantly increased the ability of Lp(a) to be internalized, an effect that was partially reduced by the addition of PCSK9. This indicates a potential key role for the LDLR in regulating Lp(a) catabolism. Furthermore, knockdown of clathrin heavy chain resulted in a significant decrease in apo(a) internalization and apo(a) internalization was not further reduced by pre-treatment of PCSK9 in the context of clathrin heavy chain knockdown. Treatment of HepG2 cells with a lysosomal inhibitor, but not a proteosomal inhibitor, resulted in accumulation of Lp(a) in HepG2 cells indicating that Lp(a) is potentially targeted for degradation through lysosomes. Taken together, these results indicate that Lp(a)/apo(a) uptake can be regulated in HepG2 cells by PCSK9 and the LDLR through clathrin-mediated endocytosis and lysosomal degradation.


2001 ◽  
Vol 114 (20) ◽  
pp. 3737-3747 ◽  
Author(s):  
Maria L. Torgersen ◽  
Grethe Skretting ◽  
Bo van Deurs ◽  
Kirsten Sandvig

The mechanism of cholera toxin (CT) internalization has been investigated using Caco-2 cells transfected with caveolin to induce formation of caveolae, HeLa cells with inducible synthesis of mutant dynamin (K44A) and BHK cells in which antisense mRNA to clathrin heavy chain can be induced. Here we show that endocytosis and the ability of CT to increase the level of cAMP were unaltered in caveolin-transfected cells grown either in a non-polarized or polarized manner. Treatment of Caco-2 cells with filipin reduced CT-uptake by less than 20%, suggesting that caveolae do not play a major role in the uptake. Extraction of cholesterol by methyl-β-cyclodextrin, which removes caveolae and inhibits uptake from clathrin-coated pits, gave 30-40% reduction of CT-endocytosis. Also, CT-uptake in HeLa K44A cells was reduced by 50-70% after induction of mutant dynamin, which inhibits both caveolae- and clathrin-dependent endocytosis. These cells contain few caveolae, and nystatin and filipin had no effect on CT-uptake, indicating major involvement of clathrin-coated pits in CT-internalization. Similarly, in BHK cells, where clathrin-dependent endocytosis is blocked by induction of antisense clathrin heavy chain, the CT-uptake was reduced by 50% in induced cells. In conclusion, a large fraction of CT can be endocytosed by clathrin-dependent as well as by caveolae- and clathrin-independent endocytosis in different cell types.


1999 ◽  
Vol 112 (19) ◽  
pp. 3195-3203 ◽  
Author(s):  
A.A. Noegel ◽  
F. Rivero ◽  
R. Albrecht ◽  
K.P. Janssen ◽  
J. Kohler ◽  
...  

The CAP (cyclase-associated protein) homologue of Dictyostelium discoideum is a phosphatidylinositol 4,5-bisphosphate (PIP(2)) regulated G-actin sequestering protein which is present in the cytosol and shows enrichment at plasma membrane regions. It is composed of two domains separated by a proline rich stretch. The sequestering activity has been localized to the C-terminal domain of the protein, whereas the presence of the N-terminal domain seems to be required for PIP(2)-regulation of the sequestering activity. Here we have constructed GFP-fusions of N- and C-domain and found that the N-terminal domain showed CAP-specific enrichment at the anterior and posterior ends of cells like endogenous CAP irrespective of the presence of the proline rich region. Mutant cells expressing strongly reduced levels of CAP were generated by homologous recombination. They had an altered cell morphology with very heterogeneous cell sizes and exhibited a cytokinesis defect. Growth on bacteria was normal both in suspension and on agar plates as was phagocytosis of yeast and bacteria. In suspension in axenic medium mutant cells grew more slowly and did not reach saturation densities observed for wild-type cells. This was paralleled by a reduction in fluid phase endocytosis. Development was delayed by several hours under all conditions assayed, furthermore, motile behaviour was affected.


1992 ◽  
Vol 117 (2) ◽  
pp. 279-290 ◽  
Author(s):  
A Pelchen-Matthews ◽  
I Boulet ◽  
DR Littman ◽  
R Fagard ◽  
M Marsh

The lymphocyte glycoprotein CD4 is constitutively internalized and recycled in nonlymphoid cells, but is excluded from the endocytic pathway in lymphocytic cells (Pelchen-Matthews, A., J. E. Armes, G. Griffiths, and M. Marsh. 1991. J. Exp. Med. 173: 575-587). Inhibition of CD4 endocytosis is dependent on CD4 expressing an intact cytoplasmic domain and is only observed in cells where CD4 can interact with the protein tyrosine kinase p56lck, a member of the src gene family. We have expressed p56lck, p60c-src, or chimeras of the two proteins in CD4-transfected NIH-3T3 or HeLa cells. Immunoprecipitation of CD4 and in vitro kinase assays showed that p56lck and the lck/src chimera, which contains the NH2 terminus of p56lck, can associate with CD4. In contrast, p60c-src and the src/lck chimera, which has the NH2 terminus of p60c-src, do not associate with CD4. Endocytosis assays using radioiodinated anti-CD4 monoclonal antibodies demonstrated that coexpression of CD4 with p56lck, but not with p60c-src, inhibited CD4 endocytosis, and that the extent of the inhibition depended directly on the relative levels of CD4 and p56lck expressed. The uptake of mutant CD4 molecules which cannot interact with p56lck was not affected. Measurement of the fluid-phase endocytosis of HRP or the internalization of transferrin indicated that the effect of p56lck was specific for CD4, and did not extend to other receptor-mediated or fluid-phase endocytic processes. Immunogold labeling of CD4 at the cell surface and observation by electron microscopy demonstrated directly that p56lck inhibits CD4 endocytosis by preventing its entry into coated pits.


1993 ◽  
Vol 13 (1) ◽  
pp. 521-532 ◽  
Author(s):  
K K Nelson ◽  
S K Lemmon

Clathrin-mediated vesicular transport is important for normal growth of the yeast Saccharomyces cerevisiae. Previously, we identified a genetic locus (SCD1) that influences the ability of clathrin heavy-chain-deficient (Chc-) yeast cells to survive. With the scd1-v allele, Chc- yeast cells are viable but grow poorly; with the scd1-i allele, Chc- cells are inviable. To identify the SCD1 locus and other genes that can rescue chc1 delta scd1-i cells to viability, a multicopy suppressor selection strategy was developed. A strain of scd1-i genotype carrying the clathrin heavy-chain gene under GAL1 control (GAL1:CHC1) was transformed with a YEp24 yeast genomic library, and colonies that could grow on glucose were selected. Plasmids from six distinct genetic loci, none of which encoded CHC1, were recovered. One of the suppressor loci was shown to be UBI4, the polyubiquitin gene. UBI4 rescues only in high copy number and is not allelic to SCD1. The conjugation of ubiquitin to intracellular proteins can mediate their selective degradation. Since UBI4 is required for survival of yeast cells under stress and is induced during starvation, ubiquitin expression in GAL1:CHC1 cells was examined. After a shift to growth on glucose to repress synthesis of clathrin heavy chains, UBI4 mRNA levels were elevated > 10-fold, whereas the quantity of free ubiquitin declined severalfold relative to that of Chc+ cells. In addition, novel higher-molecular-weight ubiquitin conjugates appeared in clathrin-deficient cells. We suggest that higher levels of ubiquitin are required for turnover of mislocalized or improperly processed proteins that accumulate in the absence of clathrin and that ubiquitin may play a general role in turnover of proteins in the secretory or endocytic pathway.


Sign in / Sign up

Export Citation Format

Share Document