scholarly journals A phosphatidylinositol transfer protein controls the phosphatidylcholine content of yeast Golgi membranes

1994 ◽  
Vol 124 (3) ◽  
pp. 273-287 ◽  
Author(s):  
TP McGee ◽  
HB Skinner ◽  
EA Whitters ◽  
SA Henry ◽  
VA Bankaitis

SEC14p is required for protein transport from the yeast Golgi complex. We describe a quantitative analysis of yeast bulk membrane and Golgi membrane phospholipid composition under conditions where Golgi secretory function has been uncoupled from its usual SEC14p requirement. The data demonstrate that SEC14p specifically functions to maintain a reduced phosphatidylcholine content in Golgi membranes and indicate that overproduction of SEC14p markedly reduces the apparent rate of phosphatidylcholine biosynthesis via the CDP-choline pathway in vivo. We suggest that SEC14p serves as a sensor of Golgi membrane phospholipid composition through which the activity of the CDP-choline pathway in Golgi membranes is regulated such that a phosphatidylcholine content that is compatible with the essential secretory function of these membranes is maintained.

1999 ◽  
Vol 10 (7) ◽  
pp. 2235-2250 ◽  
Author(s):  
Marcos P. Rivas ◽  
Brian G. Kearns ◽  
Zhigang Xie ◽  
Shuling Guo ◽  
M. Chandra Sekar ◽  
...  

SacIp dysfunction results in bypass of the requirement for phosphatidylinositol transfer protein (Sec14p) function in yeast Golgi processes. This effect is accompanied by alterations in inositol phospholipid metabolism and inositol auxotrophy. Elucidation of how sac1mutants effect “bypass Sec14p” will provide insights into Sec14p function in vivo. We now report that, in addition to a dramatic accumulation of phosphatidylinositol-4-phosphate,sac1 mutants also exhibit a specific acceleration of phosphatidylcholine biosynthesis via the CDP-choline pathway. This phosphatidylcholine metabolic phenotype is sensitive to the two physiological challenges that abolish bypass Sec14p insac1 strains; i.e. phospholipase D inactivation and expression of bacterial diacylglycerol (DAG) kinase. Moreover, we demonstrate that accumulation of phosphatidylinositol-4-phosphate in sac1mutants is insufficient to effect bypass Sec14p. These data support a model in which phospholipase D activity contributes to generation of DAG that, in turn, effects bypass Sec14p. A significant fate for this DAG is consumption by the CDP-choline pathway. Finally, we determine that CDP-choline pathway activity contributes to the inositol auxotrophy of sac1 strains in a novel manner that does not involve obvious defects in transcriptional expression of theINO1 gene.


2006 ◽  
Vol 34 (3) ◽  
pp. 377-380 ◽  
Author(s):  
P. Griac ◽  
R. Holic ◽  
D. Tahotna

Yeast Sec14p acts as a phosphatidylinositol/phosphatidylcholine-transfer protein in vitro. In vivo, it is essential in promoting Golgi secretory function. Products of five genes named SFH1–SFH5 (Sec Fourteen Homologues 1–5) exhibit significant sequence homology to Sec14p and together they form the Sec14p family of lipid-transfer proteins. It is a diverse group of proteins with distinct subcellular localizations and varied physiological functions related to lipid metabolism and membrane trafficking.


2001 ◽  
Vol 12 (4) ◽  
pp. 1117-1129 ◽  
Author(s):  
Zhigang Xie ◽  
Min Fang ◽  
Vytas A. Bankaitis

Yeast phosphatidylinositol-transfer protein (Sec14p) is essential for Golgi secretory function and cell viability. This requirement of Sec14p is relieved by genetic inactivation of the cytidine diphosphate-choline pathway for phosphatidycholine (PtdCho) biosynthesis. Standard phenotypic analyses indicate that inactivation of the phosphatidylethanolamine (PtdEtn) pathway for PtdCho biosynthesis, however, does not rescue the growth and secretory defects associated with Sec14p deficiency. We now report inhibition of choline uptake from the media reveals an efficient “bypass Sec14p” phenotype associated with PtdEtn-methylation pathway defects. We further show that the bypass Sec14p phenotype associated with PtdEtn-methylation pathway defects resembles other bypass Sec14p mutations in its dependence on phospholipase D activity. Finally, we find that increased dosage of enzymes that catalyze phospholipase D-independent turnover of PtdCho, via mechanisms that do not result in a direct production of phosphatidic acid or diacylglycerol, effect a partial rescue of sec14-1ts-associated growth defects. Taken together, these data support the idea that PtdCho is intrinsically toxic to yeast Golgi secretory function.


2007 ◽  
Vol 97 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Melissa M. Grant ◽  
Nalini Mistry ◽  
Joseph Lunec ◽  
Helen R. Griffiths

To investigate the hypothesis that the micronutrient ascorbic acid can modulate the functional genome, T cells (CCRF-HSB2) were treated with ascorbic acid (up to 150 μm) for up to 24 h. Protein expression changes were assessed by two-dimensional electrophoresis. Forty-one protein spots which showed greater than two-fold expression changes were subject to identification by matrix-assisted laser desorption ionisation time of flight MS. The confirmed protein identifications were clustered into five groups; proteins were associated with signalling, carbohydrate metabolism, apoptosis, transcription and immune function. The increased expression of phosphatidylinositol transfer protein (promotes intracellular signalling) within 5 min of ascorbic acid treatment was confirmed by Western blotting. Together, these observations suggest that ascorbic acid modulates the T cell proteome in a time- and dose-dependent manner and identify molecular targets for study following antioxidant supplementation in vivo.


2020 ◽  
Vol 61 (8) ◽  
pp. 1232-1243 ◽  
Author(s):  
Joanna M. Kwiatek ◽  
George M. Carman

PA phosphatase, encoded by PAH1 in the yeast Saccharomyces cerevisiae, catalyzes the Mg2+-dependent dephosphorylation of PA, producing DAG at the nuclear/ER membrane. This enzyme plays a major role in triacylglycerol synthesis and in the regulation of phospholipid synthesis. As an interfacial enzyme, PA phosphatase interacts with the membrane surface, binds its substrate, and catalyzes its reaction. The Triton X-100/PA-mixed micellar system has been utilized to examine the activity and regulation of yeast PA phosphatase. This system, however, does not resemble the in vivo environment of the membrane phospholipid bilayer. We developed an assay system that mimics the nuclear/ER membrane to assess PA phosphatase activity. PA was incorporated into unilamellar phospholipid vesicles (liposomes) composed of the major nuclear/ER membrane phospholipids, PC, PE, PI, and PS. We optimized this system to support enzyme-liposome interactions and to afford activity that is greater than that obtained with the aforementioned detergent system. Activity was regulated by phospholipid composition, whereas the enzyme’s interaction with liposomes was insensitive to composition. Greater activity was attained with large (≥100 nm) versus small (50 nm) vesicles. The fatty-acyl moiety of PA had no effect on this activity. PA phosphatase activity was dependent on the bulk (hopping mode) and surface (scooting mode) concentrations of PA, suggesting a mechanism by which the enzyme operates along the nuclear/ER membrane in vivo.


1997 ◽  
Vol 139 (2) ◽  
pp. 351-363 ◽  
Author(s):  
Scott C. Milligan ◽  
James G. Alb ◽  
Raya B. Elagina ◽  
Vytas A. Bankaitis ◽  
David R. Hyde

The Drosophila retinal degeneration B (rdgB) gene encodes an integral membrane protein involved in phototransduction and prevention of retinal degeneration. RdgB represents a nonclassical phosphatidylinositol transfer protein (PITP) as all other known PITPs are soluble polypeptides. Our data demonstrate roles for RdgB in proper termination of the phototransduction light response and dark recovery of the photoreceptor cells. Expression of RdgB's PITP domain as a soluble protein (RdgB-PITP) in rdgB2 mutant flies is sufficient to completely restore the wild-type electrophysiological light response and prevent the degeneration. However, introduction of the T59E mutation, which does not affect RdgB-PITP's phosphatidylinositol (PI) and phosphatidycholine (PC) transfer in vitro, into the soluble (RdgB-PITP-T59E) or full-length (RdgB-T59E) proteins eliminated rescue of retinal degeneration in rdgB2 flies, while the light response was partially maintained. Substitution of the rat brain PITPα, a classical PI transfer protein, for RdgB's PITP domain (PITPα or PITPα-RdgB chimeric protein) neither restored the light response nor maintained retinal integrity when expressed in rdgB2 flies. Therefore, the complete repertoire of essential RdgB functions resides in RdgB's PITP domain, but other PITPs possessing PI and/or PC transfer activity in vitro cannot supplant RdgB function in vivo. Expression of either RdgB-T59E or PITPα-RdgB in rdgB+ flies produced a dominant retinal degeneration phenotype. Whereas RdgB-T59E functioned in a dominant manner to significantly reduce steady-state levels of rhodopsin, PITPα-RdgB was defective in the ability to recover from prolonged light stimulation and caused photoreceptor degeneration through an unknown mechanism. This in vivo analysis of PITP function in a metazoan system provides further insights into the links between PITP dysfunction and an inherited disease in a higher eukaryote.


1998 ◽  
Vol 335 (1) ◽  
pp. 175-179 ◽  
Author(s):  
Marie E. MONACO ◽  
Richard J. ALEXANDER ◽  
Gerry T. SNOEK ◽  
Nancy H. MOLDOVER ◽  
Karel W. A. WIRTZ ◽  
...  

Phosphatidylinositol transfer proteins (PITPs) and their yeast counterpart (SEC14p) possess the ability to bind phosphatidylinositol (PtdIns) and transfer it between membranes in vitro. However, the biochemical function of these proteins in vivo is unclear. In the present study, the physiological role of PITP was investigated by determining the biochemical consequences of lowering the cellular content of this protein. WRK-1 rat mammary tumour cells were transfected with a plasmid containing a full-length rat PITPα cDNA inserted in the antisense orientation and the resultant cell clones were analysed. Three clones expressing antisense mRNA for PITPα were compared with three clones transfected with the expression vector lacking the insert. The three antisense clones had an average of 25% less PITPα protein than control clones. Two of the three antisense clones also exhibited a decreased rate of growth. All three antisense clones exhibited a significant decrease in the incorporation of labelled precursors into PtdCho during a 90-min incubation period. Under the same conditions, however, there was no change in precursor incorporation into PtdIns. Further experimentation indicated that the decrease in precursor incorporation seen in antisense clones was not due to an increased rate of turnover. When choline metabolism was analysed more extensively in one control (2-5) and one antisense (4-B) clone using equilibrium-labelling conditions (48 h of incubation), the following were observed: (1) the decrease in radioactive labelling of PtdCho seen in short-term experiments was also observed in long-term experiments, suggesting that the total amount of PtdCho was lower in antisense-transfected clones (this was confirmed by mass measurements); (2) a similar decrease was seen in cellular sphingomyelin, lysoPtdCho and glycerophosphorylcholine; (3) an average two-fold increase in cellular phosphorylcholine was observed in the antisense-transfected clone; (4) cellular choline was, on average, decreased; and (5) cellular CDPcholine was not significantly altered.


2000 ◽  
Vol 11 (6) ◽  
pp. 1989-2005 ◽  
Author(s):  
Xinmin Li ◽  
Sheri M. Routt ◽  
Zhigang Xie ◽  
Xiaoxia Cui ◽  
Min Fang ◽  
...  

Yeast phosphatidylinositol transfer protein (Sec14p) is essential for Golgi function and cell viability. We now report a characterization of five yeast SFH (Sec Fourteen Homologue) proteins that share 24–65% primary sequence identity with Sec14p. We show that Sfh1p, which shares 64% primary sequence identity with Sec14p, is nonfunctional as a Sec14p in vivo or in vitro. Yet,SFH proteins sharing low primary sequence similarity with Sec14p (i.e., Sfh2p, Sfh3p, Sfh4p, and Sfh5p) represent novel phosphatidylinositol transfer proteins (PITPs) that exhibit phosphatidylinositol- but not phosphatidylcholine-transfer activity in vitro. Moreover, increased expression of Sfh2p, Sfh4p, or Sfh5p rescues sec14-associated growth and secretory defects in a phospholipase D (PLD)-sensitive manner. Several independent lines of evidence further demonstrate thatSFH PITPs are collectively required for efficient activation of PLD in vegetative cells. These include a collective requirement for SFH proteins in Sec14p-independent cell growth and in optimal activation of PLD in Sec14p-deficient cells. Consistent with these findings, Sfh2p colocalizes with PLD in endosomal compartments. The data indicate that SFH gene products cooperate with “bypass-Sec14p” mutations and PLD in a complex interaction through which yeast can adapt to loss of the essential function of Sec14p. These findings expand the physiological repertoire of PITP function in yeast and provide the first in vivo demonstration of a role for specific PITPs in stimulating activation of PLD.


Sign in / Sign up

Export Citation Format

Share Document