scholarly journals CEP3 encodes a centromere protein of Saccharomyces cerevisiae.

1995 ◽  
Vol 128 (5) ◽  
pp. 749-760 ◽  
Author(s):  
A V Strunnikov ◽  
J Kingsbury ◽  
D Koshland

We have designed a screen to identify mutants specifically affecting kinetochore function in the yeast Saccharomyces cerevisiae. The selection procedure was based on the generation of "synthetic acentric" minichromosomes. "Synthetic acentric" minichromosomes contain a centromere locus, but lack centromere activity due to combination of mutations in centromere DNA and in a chromosomal gene (CEP) encoding a putative centromere protein. Ten conditional lethal cep mutants were isolated, seven were found to be alleles of NDC10 (CEP2) encoding the 110-kD protein of yeast kinetochore. Three mutants defined a novel essential gene CEP3. The CEP3 product (Cep3p) is a 71-kD protein with a potential DNA-binding domain (binuclear Zn-cluster). At nonpermissive temperature the cep3 cells arrest with an undivided nucleus and a short mitotic spindle. At permissive temperature the cep3 cells are unable to support segregation of minichromosomes with mutations in the central part of element III of yeast centromere DNA. These minichromosomes, when isolated from cep3 cultures, fail to bind bovine microtubules in vitro. The sum of genetic, cytological and biochemical data lead us to suggest that the Cep3 protein is a DNA-binding component of yeast centromere. Molecular mass and sequence comparison confirm that Cep3p is the p64 component of centromere DNA binding complex Cbf3 (Lechner, 1994).

2005 ◽  
Vol 4 (4) ◽  
pp. 832-835 ◽  
Author(s):  
Terri S. Rice ◽  
Min Ding ◽  
David S. Pederson ◽  
Nicholas H. Heintz

ABSTRACT Here we show that the Saccharomyces cerevisiae tRNAHis guanylyltransferase Thg1p interacts with the origin recognition complex in vivo and in vitro and that overexpression of hemagglutinin-Thg1p selectively impedes growth of orc2-1(Ts) cells at the permissive temperature. Studies with conditional mutants indicate that Thg1p couples nuclear division and migration to cell budding and cytokinesis in yeast.


1991 ◽  
Vol 11 (12) ◽  
pp. 5910-5918 ◽  
Author(s):  
Y L Yuan ◽  
S Fields

The STE12 protein of the yeast Saccharomyces cerevisiae binds to the pheromone response element (PRE) present in the upstream region of genes whose transcription is induced by pheromone. Using DNase I footprinting assays with bacterially made STE12 fragments, we localized the DNA-binding domain to 164 amino acids near the amino terminus. Footprinting of oligonucleotide-derived sequences containing one PRE, or two PREs in head-to-tail or tail-to-tail orientation, showed that the N-terminal 215 amino acids of STE12 has similar binding affinity to either of the dimer sites and a binding affinity 5- to 10-fold lower for the monomer site. This binding cooperativity was also evident on a fragment from the MFA2 gene, which encodes the a-factor pheromone. On this fragment, the 215-amino-acid STE12 fragment protected both a consensus PRE as well as a degenerate PRE containing an additional residue. Mutation of the degenerate site led to a 5- to 10-fold decrease in binding; mutation of the consensus site led to a 25-fold decrease in binding. The ability of PREs to function as pheromone-inducible upstream activation sequences in yeast correlated with their ability to bind the STE12 domain in vitro. The sequence of the STE12 DNA-binding domain contains similarities to the homeodomain, although it is highly diverged from other known examples of this motif. Moreover, the alignment between STE12 and the homeodomain postulates loops after both the putative helix 1 and helix 2 of the STE12 sequence.


2001 ◽  
Vol 155 (5) ◽  
pp. 763-774 ◽  
Author(s):  
Jung-seog Kang ◽  
Iain M. Cheeseman ◽  
George Kallstrom ◽  
Soundarapandian Velmurugan ◽  
Georjana Barnes ◽  
...  

We have shown previously that Ipl1 and Sli15 are required for chromosome segregation in Saccharomyces cerevisiae. Sli15 associates directly with the Ipl1 protein kinase and these two proteins colocalize to the mitotic spindle. We show here that Sli15 stimulates the in vitro, and likely in vivo, kinase activity of Ipl1, and Sli15 facilitates the association of Ipl1 with the mitotic spindle. The Ipl1-binding and -stimulating activities of Sli15 both reside within a region containing homology to the metazoan inner centromere protein (INCENP). Ipl1 and Sli15 also bind to Dam1, a microtubule-binding protein required for mitotic spindle integrity and kinetochore function. Sli15 and Dam1 are most likely physiological targets of Ipl1 since Ipl1 can phosphorylate both proteins efficiently in vitro, and the in vivo phosphorylation of both proteins is reduced in ipl1 mutants. Some dam1 mutations exacerbate the phenotype of ipl1 and sli15 mutants, thus providing evidence that Dam1 interactions with Ipl1–Sli15 are functionally important in vivo. Similar to Dam1, Ipl1 and Sli15 each bind to microtubules directly in vitro, and they are associated with yeast centromeric DNA in vivo. Given their dual association with microtubules and kinetochores, Ipl1, Sli15, and Dam1 may play crucial roles in regulating chromosome–spindle interactions or in the movement of kinetochores along microtubules.


1990 ◽  
Vol 10 (4) ◽  
pp. 1743-1753 ◽  
Author(s):  
H Wang ◽  
P R Nicholson ◽  
D J Stillman

A DNA-binding protein has been identified from extracts of the budding yeast Saccharomyces cerevisiae which binds to sites present in the promoter regions of a number of yeast genes transcribed by RNA polymerase II, including SIN3 (also known as SDI1), SWI5, CDC9, and TOP1. This protein also binds to a site present in the enhancer for the 35S rRNA gene, which is transcribed by RNA polymerase I, and appears to be identical to the previously described REB1 protein (B. E. Morrow, S. P. Johnson, and J. R. Warner, J. Biol. Chem. 264:9061-9068, 1989). When oligonucleotides containing a REB1-binding site are placed between the CYC1 upstream activating sequence and TATA box, transcription by RNA polymerase II in vivo is substantially reduced, suggesting that REB1 acts as a repressor of RNA polymerase II transcription. The in vitro levels of the REB1 DNA-binding activity are reduced in extracts prepared from strains bearing a mutation in the SIN3 gene. A greater reduction in REB1 activity is observed if the sin3 mutant strain is grown in media containing galactose as a carbon source.


1991 ◽  
Vol 11 (12) ◽  
pp. 5910-5918 ◽  
Author(s):  
Y L Yuan ◽  
S Fields

The STE12 protein of the yeast Saccharomyces cerevisiae binds to the pheromone response element (PRE) present in the upstream region of genes whose transcription is induced by pheromone. Using DNase I footprinting assays with bacterially made STE12 fragments, we localized the DNA-binding domain to 164 amino acids near the amino terminus. Footprinting of oligonucleotide-derived sequences containing one PRE, or two PREs in head-to-tail or tail-to-tail orientation, showed that the N-terminal 215 amino acids of STE12 has similar binding affinity to either of the dimer sites and a binding affinity 5- to 10-fold lower for the monomer site. This binding cooperativity was also evident on a fragment from the MFA2 gene, which encodes the a-factor pheromone. On this fragment, the 215-amino-acid STE12 fragment protected both a consensus PRE as well as a degenerate PRE containing an additional residue. Mutation of the degenerate site led to a 5- to 10-fold decrease in binding; mutation of the consensus site led to a 25-fold decrease in binding. The ability of PREs to function as pheromone-inducible upstream activation sequences in yeast correlated with their ability to bind the STE12 domain in vitro. The sequence of the STE12 DNA-binding domain contains similarities to the homeodomain, although it is highly diverged from other known examples of this motif. Moreover, the alignment between STE12 and the homeodomain postulates loops after both the putative helix 1 and helix 2 of the STE12 sequence.


Genetics ◽  
1990 ◽  
Vol 124 (1) ◽  
pp. 81-90 ◽  
Author(s):  
J A Prendergast ◽  
L E Murray ◽  
A Rowley ◽  
D R Carruthers ◽  
R A Singer ◽  
...  

Abstract A centrifugation procedure to enrich for enlarged cells has been used to isolate temperature-sensitive cdc mutants of the yeast Saccharomyces cerevisiae. Among these mutants are strains containing mutations that arrest proliferation at the regulatory step start. These new start mutations define two previously unidentified genes, CDC67 and CDC68, and reveal that a previously identified gene, DNA33 (here termed CDC65), can harbour start mutations. Each new start mutation permits significant biosynthetic activity after transfer of mutant cells to the non-permissive temperature. The cdc68-1 start mutation causes arrest of cell proliferation without inhibition of mating ability, while the cdc65-1 and cdc67-1 mutations inhibit zygote formation and successful conjugation. The identification of new start genes by a novel selection procedure suggests that the catalog of genes that influence start is large.


1990 ◽  
Vol 10 (4) ◽  
pp. 1743-1753
Author(s):  
H Wang ◽  
P R Nicholson ◽  
D J Stillman

A DNA-binding protein has been identified from extracts of the budding yeast Saccharomyces cerevisiae which binds to sites present in the promoter regions of a number of yeast genes transcribed by RNA polymerase II, including SIN3 (also known as SDI1), SWI5, CDC9, and TOP1. This protein also binds to a site present in the enhancer for the 35S rRNA gene, which is transcribed by RNA polymerase I, and appears to be identical to the previously described REB1 protein (B. E. Morrow, S. P. Johnson, and J. R. Warner, J. Biol. Chem. 264:9061-9068, 1989). When oligonucleotides containing a REB1-binding site are placed between the CYC1 upstream activating sequence and TATA box, transcription by RNA polymerase II in vivo is substantially reduced, suggesting that REB1 acts as a repressor of RNA polymerase II transcription. The in vitro levels of the REB1 DNA-binding activity are reduced in extracts prepared from strains bearing a mutation in the SIN3 gene. A greater reduction in REB1 activity is observed if the sin3 mutant strain is grown in media containing galactose as a carbon source.


Genetics ◽  
2001 ◽  
Vol 157 (4) ◽  
pp. 1493-1502
Author(s):  
Richard D Gardner ◽  
Atasi Poddar ◽  
Chris Yellman ◽  
Penny A Tavormina ◽  
M Cristina Monteagudo ◽  
...  

Abstract We have measured the activity of the spindle checkpoint in null mutants lacking kinetochore activity in the yeast Saccharomyces cerevisiae. We constructed deletion mutants for nonessential genes by one-step gene replacements. We constructed heterozygous deletions of one copy of essential genes in diploid cells and purified spores containing the deletion allele. In addition, we made gene fusions for three essential genes to target the encoded proteins for proteolysis (degron alleles). We determined that Ndc10p, Ctf13p, and Cep3p are required for checkpoint activity. In contrast, cells lacking Cbf1p, Ctf19p, Mcm21p, Slk19p, Cse4p, Mif2p, Mck1p, and Kar3p are checkpoint proficient. We conclude that the kinetochore plays a critical role in checkpoint signaling in S. cerevisiae. Spindle checkpoint activity maps to a discreet domain within the kinetochore and depends on the CBF3 protein complex.


1993 ◽  
Vol 13 (4) ◽  
pp. 2152-2161 ◽  
Author(s):  
P Belhumeur ◽  
A Lee ◽  
R Tam ◽  
T DiPaolo ◽  
N Fortin ◽  
...  

The temperature-sensitive mutation prp20-1 of Saccharomyces cerevisiae exhibits a pleiotropic phenotype associated with a general failure to maintain a proper organization of the nucleus. Its mammalian homolog, RCC1, is not only reported to be involved in the negative control of chromosome condensation but is also believed to assist in the coupling of DNA replication to the entry into mitosis. Recent studies on Xenopus RCC1 have strongly suggested a further role for this protein in the formation or maintenance of the DNA replication machinery. To elucidate the nature of the various components required for this PRP20 control pathway in S. cerevisiae, we undertook a search for multicopy suppressors of a prp20 thermosensitive mutant. Two genes, GSP1 and GSP2, were identified that encode almost identical polypeptides of 219 and 220 amino acids. Sequence analyses of these proteins show them to contain the ras consensus domains involved in GTP binding and metabolism. The levels of the GSP1 transcript are about 10-fold those of GSP2. As for S. cerevisiae RAS2, GSP2 expression exhibits carbon source dependency, while GSP1 expression does not. GSP1 is an essential gene, and GSP2 is not required for cell viability. We show that GSP1p is nuclear, that it can bind GTP in an in vitro assay, and finally, that a mutation in GSP1p which activates small ras-like proteins by increasing the stability of the GTP-bound form causes a dominant lethal phenotype. We believe that these two gene products may serve in regulating the activities of the multicomponent PRP20 complex.


1996 ◽  
Vol 16 (6) ◽  
pp. 2719-2727 ◽  
Author(s):  
S Silve ◽  
P Leplatois ◽  
A Josse ◽  
P H Dupuy ◽  
C Lanau ◽  
...  

SR 31747 is a novel immunosuppressant agent that arrests cell proliferation in the yeast Saccharomyces cerevisiae, SR 31747-treated cells accumulate the same aberrant sterols as those found in a mutant impaired in delta 8- delta 7-sterol isomerase. Sterol isomerase activity is also inhibited by SR 31747 in in vitro assays. Overexpression of the sterol isomerase-encoding gene, ERG2, confers enhanced SR resistance. Cells growing anaerobically on ergosterol-containing medium are not sensitive to SR. Disruption of the sterol isomerase-encoding gene is lethal in cells growing in the absence of exogenous ergosterol, except in SR-resistant mutants lacking either the SUR4 or the FEN1 gene product. The results suggest that sterol isomerase is the target of SR 31747 and that both the SUR4 and FEN1 gene products are required to mediate the proliferation arrest induced by ergosterol depletion.


Sign in / Sign up

Export Citation Format

Share Document