scholarly journals Regulated binding of PTP1B-like phosphatase to N-cadherin: control of cadherin-mediated adhesion by dephosphorylation of beta-catenin.

1996 ◽  
Vol 134 (3) ◽  
pp. 801-813 ◽  
Author(s):  
J Balsamo ◽  
T Leung ◽  
H Ernst ◽  
M K Zanin ◽  
S Hoffman ◽  
...  

Cadherins are a family of cell-cell adhesion molecules which play a central role in controlling morphogenetic movements during development. Cadherin function is regulated by its association with the actin containing cytoskeleton, an association mediated by a complex of cytoplasmic proteins, the catenins: alpha, beta, and gamma. Phosphorylated tyrosine residues on beta-catenin are correlated with loss of cadherin function. Consistent with this, we find that only nontyrosine phosphorylated beta-catenin is associated with N-cadherin in E10 chick retina tissue. Moreover, we demonstrate that a PTP1B-like tyrosine phosphatase associates with N-cadherin and may function as a regulatory switch controlling cadherin function by dephosphorylating beta-catenin, thereby maintaining cells in an adhesion-competent state. The PTP1B-like phosphatase is itself tyrosine phosphorylated. Moreover, both direct binding experiments performed with phosphorylated and dephosphorylated molecules, and treatment of cells with tyrosine kinase inhibitors indicate that the interaction of the PTP1B-like phosphatase with N-cadherin depends on its tyrosine phosphorylation. Concomitant with the tyrosine kinase inhibitor-induced loss of the PTP1B-like phosphatase from its association with N-cadherin, phosphorylated tyrosine residues are retained on beta-catenin, the association of N-cadherin with the actin containing cytoskeleton is lost and N-cadherin-mediated cell adhesion is prevented. Tyrosine phosphatase inhibitors also result in the accumulation of phosphorylated tyrosine residues on beta-catenin, loss of the association of N-cadherin with the actin-containing cytoskeleton, and prevent N-cadherin mediated adhesion, presumably by directly blocking the function of the PTP1B-like phosphatase. We previously showed that the binding of two ligands to the cell surface N-acetylgalactosaminylphosphotransferase (GalNAcPTase), the monoclonal antibody 1B11 and a proteoglycan with a 250-kD core protein, results in the accumulation of phosphorylated tyrosine residues on beta-catenin, uncoupling of N-cadherin from its association with the actin containing cytoskeleton, and loss of N-cadherin function. We now report that binding of these ligands to the GalNAcPTase results in the absence of the PTP1B-like phosphatase from its association with N-cadherin as well as the loss of the tyrosine kinase and tyrosine phosphatase activities that otherwise co-precipitate with N-cadherin. Control antibodies and proteoglycans have no such effect. This effect is similar to that observed with tyrosine kinase inhibitors, suggesting that the GalNAcPTase/proteoglycan interaction inhibits a tyrosine kinase, thereby preventing the phosphorylation of the PTP1B-like phosphatase, and its association with N-cadherin. Taken together these data indicate that a PTP1B-like tyrosine phosphatase can regulate N-cadherin function through its ability to dephosphorylate beta-catenin and that the association of the phosphatase with N-cadherin is regulated via the interaction of the GalNAcPTase with its proteoglycan ligand. In this manner the GalNAcPTase-proteoglycan interaction may play a major role in morphogenetic cell and tissue interactions during development.

2019 ◽  
Vol 4 (1-2) ◽  
pp. 41-45 ◽  
Author(s):  
Takeo Koshida ◽  
Sylvia Wu ◽  
Hitoshi Suzuki ◽  
Rimda Wanchoo ◽  
Vanesa Bijol ◽  
...  

Dasatinib is the second-generation tyrosine kinase inhibitor used in the treatment of chronic myeloid leukemia. Proteinuria has been reported with this agent. We describe two kidney biopsy–proven cases of dasatinib-induced thrombotic microangiopathy that responded to stoppage of dasatinib and using an alternate tyrosine kinase inhibitor. Certain specific tyrosine kinase inhibitors lead to endothelial injury and renal-limited thrombotic microangiopathy. Hematologists and nephrologists need to be familiar with this off-target effect of dasatinib.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohamed A. Ismail ◽  
Marzia Vezzalini ◽  
Hisham Morsi ◽  
Ahmad Abujaber ◽  
Ali Al Sayab ◽  
...  

AbstractProtein tyrosine phosphatase receptor gamma (PTPRG) is a member of the receptor-like family protein tyrosine phosphatases and acts as a tumor suppressor gene in different neoplasms. Recent studies reported the down-regulation of PTPRG expression levels in Chronic Myeloid Leukemia disease (CML). In addition, the BCR-ABL1 transcript level is currently a key predictive biomarker of CML response to treatment with Tyrosine Kinase Inhibitors (TKIs). The aim of this study was to employ flow cytometry to monitor the changes in the expression level of PTPRG in the white blood cells (WBCs) of CML patients at the time of diagnosis and following treatment with TKIs. WBCs from peripheral blood of 21 CML patients were extracted at diagnosis and during follow up along with seven healthy individuals. The PTPRG expression level was determined at protein and mRNA levels by both flow cytometry with monoclonal antibody (TPγ B9-2) and RT-qPCR, and BCR-ABL1 transcript by RT-qPCR, respectively. PTPRG expression was found to be lower in the neutrophils and monocytes of CML patients at time of diagnosis compared to healthy individuals. Treatment with TKIs nilotinib and Imatinib Mesylate restored the expression of PTPRG in the WBCs of CML patients to levels observed in healthy controls. Moreover, restoration levels were greatest in optimal responders and occurred earlier with nilotinib compared to imatinib. Our results support the measurement of PTPRG expression level in the WBCs of CML patients by flow cytometry as a monitoring tool for the response to treatment with TKIs in CML patients.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 30-31
Author(s):  
Bing Z Carter ◽  
Po Yee Mak ◽  
Vivian Ruvolo ◽  
Wenjing Tao ◽  
Paul Hughes ◽  
...  

Anti-apoptotic Bcl-2 proteins play critical roles in AML cell and AML stem/progenitor cell survival and drug resistance, hence are relevant therapeutic targets. Indeed, the combination of the selective Bcl-2 inhibitor venetoclax (VEN) with a hypomethylating agent elicits CR/CRi rates of > 65%, is well tolerated by elderly AML patients, and obtained FDA approval. However, despite of the major improvement in response rates, survival extension was limited and most patients ultimately relapsed largely due to the development of resistant disease. Molecular analysis of treated patients revealed that primary and adaptive resistance to VEN-based combinations was frequently characterized by acquisition or enrichment of clones activating signaling pathways such as FLT3 or RAS (DiNardo CD et al., Blood 2020). FLT3 is one of the most frequently mutated gene in AML, resulting in constitutive activation of FLT3 tyrosine kinase and its downstream signaling pathways such as RAS/MAPK, which can be targeted by FLT3 tyrosine kinase inhibitors (TKIs). However, patients treated with TKIs ultimately relapse and adapt to TKI therapy by reactivating the MAPK signaling pathway (Bruner JK et al., Cancer Res 2017), which is known to stabilize Mcl-1 levels. Furthermore, deregulated Mcl-1 expression was identified as a novel mechanism of primary TKI resistance in a subset of FLT3-ITD mutated AML patients (Breitenbuecher F et al., Blood 2009). Importantly, Mcl-1 expression can be induced by VEN treatment and is a major resistance factor to VEN (Pan R et al., Cancer Discover 2014; Carter BZ et al., ASH 2018). Hence, Mcl-1 inhibition may enhance the efficacy of TKIs in FLT3 mutated AML, targeting AML cells and stem/progenitor cells. To determine if targeting Mcl-1 enhances the activity of TKIs in FLT3 mutated AML, we treated MV4-11 and Molm13 cells with Mcl-1 inhibitor AMG176 and TKI gilteritinib (GIL) and observed synergism, as defined by combination index < 1 in both cells. Mechanistic studies demonstrated that GIL markedly decreased Mcl-1 and antagonized AMG176-induced Mcl-1 induction. GIL and its combination with AMG176 also decreased Bcl-xL. Although Bcl-2 protein levels were largely not changed in MV4-11 cells, we found both single treatment and the combination greatly decreased Bcl-2 associated athanogene (BAG) proteins BAG1, BAG3, and BAG4 at the RNA level, which needs to be confirmed at the protein level. The BAG proteins are a family of chaperone regulators and BAG1 was reported to bind and enhance the activity of multiple proteins known to support cells survival, including Bcl-2 (Takayama S et al., Cell 1995). Interestingly, GIL treatment greatly diminished the levels of beta-catenin and its target protein c-Myc, consistent with our previous report that FLT3 regulates beta-catenin signaling (Xiang et al., CCR, 2018). We have generated Mcl-1 overexpressing (OE) and VEN-resistance (VEN-R) MV4-11 and Molm13 cells. The Mcl-1 OE cells are highly resistant to VEN and the VEN-R cells expressed high levels of Mcl-1. Combined inhibition of AMG176 and GIL synergistically induced cell death in Mcl-1 OE and VEN-R resistant cells. Although the expression is low in AML cells we tested, BCL2A1 is also known as a resistant factor to VEN. We generated BCL2A1 OE MV4-11 and Molm13 cells and demonstrated that combined inhibition of FLT3 and Mcl-1 was highly effective in these cells as well. Western blot analysis revealed that GIL effectively decreased Mcl-1 in Mcl-1 OE and VEN-R and BCL2A1 in BCL2A1 OE MV4-11 cells. Next, we treated FLT3 mutated AML patient samples harboring both, ITD and D835 mutations, from 2 patients who had both failed VEN-based therapy and from 1 patient with ITD mutation, with AMG176 and GIL under MSC co-culture conditions. Synergy was observed in all samples in AML blasts and AML stem/progenitor cells. Collectively, our data demonstrate that targeting Mcl-1 enhances the activity of GIL in FLT3 mutated AML, including those resistant to/relapsed from VEN-based therapy, findings that may warrant clinical evaluation. Disclosures Carter: Syndax: Research Funding; Ascentage: Research Funding; AstraZeneca: Research Funding; Amgen: Research Funding. Hughes:Amgen: Current Employment. Chen:Amgen: Current Employment. Morrow:Amgen: Current Employment. Andreeff:Amgen: Research Funding; Centre for Drug Research & Development; Cancer UK; NCI-CTEP; German Research Council; Leukemia Lymphoma Foundation (LLS); NCI-RDCRN (Rare Disease Clin Network); CLL Founcdation; BioLineRx; SentiBio; Aptose Biosciences, Inc: Membership on an entity's Board of Directors or advisory committees; Daiichi-Sankyo; Breast Cancer Research Foundation; CPRIT; NIH/NCI; Amgen; AstraZeneca: Research Funding; Daiichi-Sankyo; Jazz Pharmaceuticals; Celgene; Amgen; AstraZeneca; 6 Dimensions Capital: Consultancy.


2020 ◽  
Vol 34 (3) ◽  
pp. 3773-3791 ◽  
Author(s):  
Maria Omsland ◽  
Vibeke Andresen ◽  
Stein‐Erik Gullaksen ◽  
Pilar Ayuda‐Durán ◽  
Mihaela Popa ◽  
...  

Author(s):  
Tim Eisen

Renal cancer is the commonest malignancy of the kidney and worldwide, accounts for between 2% and 3% of the total cancer burden. The mainstay of curative treatment remains surgery. There have been significant advances in surgical technique, the most important ones being nephron-sparing surgery and laparoscopic nephrectomy. The medical treatment of advanced renal cell cancer has only improved markedly in the last decade with the development of antiangiogenic tyrosine-kinase inhibitors, inhibitors of mammalian target of rapamycin, and a diminished role for immunotherapy.Tyrosine-kinase inhibitor therapy results in reduction of tumour volume in around three-quarters of patients and doubles progression-free survival, but treatment is not curative. The management of side effects in patients on maintenance tyrosine-kinase inhibitors has improved in the last 3 years, although still presents difficulties which have to be actively considered.The molecular biology of renal cell carcinoma is better understood than for the majority of solid tumours. The commonest form of renal cancer, clear-cell carcinoma of the kidney, is strongly associated with mutations in the von Hippel–Lindau gene and more recently with chromatin-remodelling genes such as PBRM1. These genetic abnormalities lead to a loss of control of angiogenesis and uncontrolled proliferation of tumour cells. There is a very wide spectrum of tumour behaviour from the extremely indolent to the terribly aggressive. It is not currently known what accounts for this disparity in tumour behaviour.A number of outstanding questions are being addressed in scientific and clinical studies such as a clearer understanding of prognostic and predictive molecular biomarkers, the role of adjuvant therapy, the role of surgery in the presence of metastatic disease, how best to use our existing agents, and investigation of novel targets and therapeutic agents, especially novel immunotherapies.


1995 ◽  
Vol 268 (1) ◽  
pp. C154-C161 ◽  
Author(s):  
G. Bischof ◽  
B. Illek ◽  
W. W. Reenstra ◽  
T. E. Machen

We studied a possible role of tyrosine kinases in the regulation of Ca entry into colonic epithelial cells HT-29/B6 using digital image processing of fura 2 fluorescence. Both carbachol and thapsigargin increased Ca entry to a similar extent and Ca influx was reduced by the tyrosine kinase inhibitor genistein (50 microM). Further experiments were performed in solutions containing 95 mM K to depolarize the membrane potential, and the effects of different inhibitors on influx of Ca, Mn, and Ba were compared. Genistein, but not the inactive analogue daidzein nor the protein kinase C inhibitor 1-(5-isoquinolinylsulfonyl)-2- methylpiperazine, decreased entry of all three divalent cations by 47-59%. In high-K solutions, carbachol or thapsigargin both caused intracellular Ca to increase to a plateau of 223 +/- 19 nM. This plateau was reduced by the tyrosine kinase inhibitors genistein (to 95 +/- 8 nM), lavendustin A (to 155 +/- 17 nM), and methyl-2,5-dihydroxycinnamate (to 39 +/- 3 nM). Orthovanadate, a protein tyrosine phosphatase inhibitor, prevented the inhibitory effect of genistein. Ca pumping was unaffected by genistein. Carbachol increased tyrosine phosphorylation (immunoblots with anti-phosphotyrosine antibodies) of 110-, 75-, and 70-kDa proteins, and this phosphorylation was inhibited by genistein. We conclude that carbachol and thapsigargin increase Ca entry, and tyrosine phosphorylation of some key proteins may be important for regulating this pathway.


Blood ◽  
1999 ◽  
Vol 93 (3) ◽  
pp. 876-885 ◽  
Author(s):  
Virgilio Evangelista ◽  
Stefano Manarini ◽  
Rita Sideri ◽  
Serenella Rotondo ◽  
Nicola Martelli ◽  
...  

Abstract Polymorphonuclear leukocyte (PMN) adhesion to activated platelets is important for the recruitment of PMN at sites of vascular damage and thrombus formation. We have recently shown that binding of activated platelets to PMN in mixed cell suspensions under shear involves P-selectin and the activated β2-integrin CD11b/CD18. Integrin activation required signaling mechanisms that were sensitive to tyrosine kinase inhibitors.1 Here we show that mixing activated, paraformaldehyde (PFA)-fixed platelets with PMNs under shear conditions leads to rapid and fully reversible tyrosine phosphorylation of a prominent protein of 110 kD (P∼110). Phosphorylation was both Ca2+ and Mg2+ dependent and was blocked by antibodies against P-selectin or CD11b/CD18, suggesting that both adhesion molecules need to engage with their respective ligands to trigger phosphorylation of P∼110. The inhibition of P∼110 phosphorylation by tyrosine kinase inhibitors correlates with the inhibition of platelet/PMN aggregation. Similar effects were observed when platelets were substituted by P-selectin–transfected Chinese hamster ovary (CHO-P) cells or when PMN were stimulated with P-selectin–IgG fusion protein. CHO-P/PMN mixed-cell aggregation and P-selectin–IgG–triggered PMN/PMN aggregation as well as P∼110 phosphorylation were all blocked by antibodies against P-selectin or CD18. In each case PMN adhesion was sensitive to the tyrosine kinase inhibitor genistein. The antibody PL-1 against P-selectin glycoprotein ligand-1 (PSGL-1) blocked platelet/PMN aggregation, indicating that PSGL-1 was the major tethering ligand for P-selectin in this experimental system. Moreover, engagement of PSGL-1 with a nonadhesion blocking antibody triggered β2-integrin–dependent genistein-sensitive aggregation as well as tyrosine phosphorylation in PMN. This study shows that binding of P-selectin to PSGL-1 triggers tyrosine kinase–dependent mechanisms that lead to CD11b/CD18 activation in PMN. The availability of the β2-integrin to engage with its ligands on the neighboring cells is necessary for the tyrosine phosphorylation of P∼110.


Blood ◽  
1999 ◽  
Vol 93 (3) ◽  
pp. 876-885 ◽  
Author(s):  
Virgilio Evangelista ◽  
Stefano Manarini ◽  
Rita Sideri ◽  
Serenella Rotondo ◽  
Nicola Martelli ◽  
...  

Polymorphonuclear leukocyte (PMN) adhesion to activated platelets is important for the recruitment of PMN at sites of vascular damage and thrombus formation. We have recently shown that binding of activated platelets to PMN in mixed cell suspensions under shear involves P-selectin and the activated β2-integrin CD11b/CD18. Integrin activation required signaling mechanisms that were sensitive to tyrosine kinase inhibitors.1 Here we show that mixing activated, paraformaldehyde (PFA)-fixed platelets with PMNs under shear conditions leads to rapid and fully reversible tyrosine phosphorylation of a prominent protein of 110 kD (P∼110). Phosphorylation was both Ca2+ and Mg2+ dependent and was blocked by antibodies against P-selectin or CD11b/CD18, suggesting that both adhesion molecules need to engage with their respective ligands to trigger phosphorylation of P∼110. The inhibition of P∼110 phosphorylation by tyrosine kinase inhibitors correlates with the inhibition of platelet/PMN aggregation. Similar effects were observed when platelets were substituted by P-selectin–transfected Chinese hamster ovary (CHO-P) cells or when PMN were stimulated with P-selectin–IgG fusion protein. CHO-P/PMN mixed-cell aggregation and P-selectin–IgG–triggered PMN/PMN aggregation as well as P∼110 phosphorylation were all blocked by antibodies against P-selectin or CD18. In each case PMN adhesion was sensitive to the tyrosine kinase inhibitor genistein. The antibody PL-1 against P-selectin glycoprotein ligand-1 (PSGL-1) blocked platelet/PMN aggregation, indicating that PSGL-1 was the major tethering ligand for P-selectin in this experimental system. Moreover, engagement of PSGL-1 with a nonadhesion blocking antibody triggered β2-integrin–dependent genistein-sensitive aggregation as well as tyrosine phosphorylation in PMN. This study shows that binding of P-selectin to PSGL-1 triggers tyrosine kinase–dependent mechanisms that lead to CD11b/CD18 activation in PMN. The availability of the β2-integrin to engage with its ligands on the neighboring cells is necessary for the tyrosine phosphorylation of P∼110.


2021 ◽  
Vol 162 (32) ◽  
pp. 1297-1302
Author(s):  
Júlia Weisinger ◽  
Ilona Tárkányi ◽  
Eid Hanna ◽  
Ágnes Kárpáti ◽  
Zsolt Nagy ◽  
...  

Összefoglaló. Bevezetés: A krónikus myeloid leukaemia a diagnosztika fejlődésének és a tirozin-kináz-gátlók bevezetésének köszönhetően az elmúlt évtizedekben kiváló prognózisú betegséggé vált. Célkitűzés: A betegséggel kapcsolatos ismereteink nagy része klinikai vizsgálatokból származik, emiatt kiemelt szerepük van a nem szelektált beteganyagon végzett elemzéseknek. Módszer: Retrospektív elemzésünkben a Semmelweis Egyetem Belgyógyászati és Onkológiai Klinikáján 2003 és 2019 között tirozin-kináz-gátló kezelésben részesült betegek adatait tekintettük át. Eredmények: Klinikánkon összesen 88 beteg részesült terápiában, közülük 73 beteg az analízis időpontjában is kezelés alatt állt. A betegek 5 éves össztúlélése 86%, 5 éves progressziómentes túlélése 70% volt. 9 beteg halt meg, közülük 2 betegnél a halál oka a progrediáló alapbetegség volt. 38 betegnél volt szükség az első vonalban terápiaváltásra, a váltás oka akkor elsősorban az elégtelen terápiás válasz volt. A későbbi terápiaváltásokra elsősorban intolerancia miatt került sor. Az első vonalban a betegek több mint fele major molekuláris választ ért el, a jelenlegi kezelés mellett a betegek 85%-ánál major molekuláris választ detektáltunk. Megbeszélés: Adataink alapján az intézményünkben kezelt betegek túlélése és a betegek által elért terápiás válasz megfelel a nemzetközi adatoknak. Következtetés: Mivel nem válogatott beteganyagról van szó, a kapott eredmények pontosabb képet adhatnak a krónikus myeloid leukaemia tirozin-kináz-gátlóval történt kezelésének eredményeiről. Orv Hetil. 2021; 162(32): 1297–1302. Summary. Introduction: As a result of advances in diagnostic techniques and the introduction of tyrosine kinase inhibitors, the prognosis of chronic myeloid leukemia has improved over the last decades. Objective: Most of our knowledge about chronic myeloid leukemia results from clinical trials, therefore data derived from non-selected patient population is substantial. Method: Data of chronic myeloid leukemia patients treated with tyrosine kinase inhibitors at the Department of Internal Medicine and Oncology, Semmelweis University, between 2003 and 2019 were analysed retrospectively. Results: 88 patients received treatment, 73 patients were on therapy at the time of the analysis. Overall survival at 5 years was 86%, progression-free survival at 5 years was 70%. 9 patients died, 2 of them due to progressive disease. 38 patients needed 2nd line therapy, the main reason of treatment change was failure of therapy. Subsequent treatment modifications were conducted mostly because of intolerance. More than half of the patients on 1st line treatment reached major molecular response and 85% of the patients on treatment at the end of the analysis are in major molecular response. Discussion: Based on our data, survival and therapeutic response of patients in our center are similar to the international results. Conclusion: This analysis provides real-world data about treatment results of chronic myeloid leukemia in the tyrosine kinase inhibitor era. Orv Hetil. 2021; 162(32): 1297–1302.


2019 ◽  
Vol 2 (17) ◽  
pp. 38-42
Author(s):  
S. T. Adleyba ◽  
L. M. Kogonia ◽  
L. E. Gurevich ◽  
A. V. Sidorov

An own experience of effective treatment of a patient with a disseminated form of gastrointestinal stromal tumor (GIST) with a preparation from the group of tyrosine kinase inhibitors (imatinib) is presented.Relevance. Therapy of gastrointestinal stromal tumors is still a complex problem of modern oncology. Since 2001, a breakthrough has occurred in the treatment of patients with GISTO due to the successful use of a targeted drug from the group of tyrosine kinase inhibitors — imatinib, which is effective in the first line of inoperable and / or metastatic GISTs, and is also used for the neoadjuvant, adjuvant therapy of localized GISTs. The lack of response to therapy and, consequently, the progression of the disease, may be associated with a decrease in the therapeutic concentration of imatinib in the blood plasma. Determining the concentration of active metabolites of imatinib in the serum allows timely identification of potential causes of insufficient response to therapy and individual correction of the dose of the drug.Materials and methods. In order to determine the significance of the correlation between increasing / decreasing the dose of imatinib and achieving a therapeutic response, we used a laboratory method of high performance liquid chromatography to determine the concentration of imatinib in serum.Conclusion. Determination of the reduced concentration of active metabolites of imatinib in the blood plasma by high performance liquid chromatography with the detection of tandem mass spectrometry in a patient with disseminated form of GIST allowed to correct the dose of the drug and achieve a positive effect.


Sign in / Sign up

Export Citation Format

Share Document