scholarly journals Impaired Integrin-mediated Adhesion and Signaling in Fibroblasts Expressing a Dominant-negative Mutant PTP1B

1998 ◽  
Vol 143 (3) ◽  
pp. 861-873 ◽  
Author(s):  
Carlos O. Arregui ◽  
Janne Balsamo ◽  
Jack Lilien

To investigate the role of nonreceptor protein tyrosine phosphatase 1B (PTP1B) in β1-integrin– mediated adhesion and signaling, we transfected mouse L cells with normal and catalytically inactive forms of the phosphatase. Parental cells and cells expressing the wild-type or mutant PTP1B were assayed for (a) adhesion, (b) spreading, (c) presence of focal adhesions and stress fibers, and (d) tyrosine phosphorylation. Parental cells and cells expressing wild-type PTP1B show similar morphology, are able to attach and spread on fibronectin, and form focal adhesions and stress fibers. In contrast, cells expressing the inactive PTP1B have a spindle-shaped morphology, reduced adhesion and spreading on fibronectin, and almost a complete absence of focal adhesions and stress fibers. Attachment to fibronectin induces tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin in parental cells and cells transfected with the wild-type PTP1B, while in cells transfected with the mutant PTP1B, such induction is not observed. Additionally, in cells expressing the mutant PTP1B, tyrosine phosphorylation of Src is enhanced and activity is reduced. Lysophosphatidic acid temporarily reverses the effects of the mutant PTP1B, suggesting the existence of a signaling pathway triggering focal adhesion assembly that bypasses the need for active PTP1B. PTP1B coimmunoprecipitates with β1-integrin from nonionic detergent extracts and colocalizes with vinculin and the ends of actin stress fibers in focal adhesions. Our data suggest that PTP1B is a critical regulatory component of integrin signaling pathways, which is essential for adhesion, spreading, and formation of focal adhesions.

2000 ◽  
Vol 151 (6) ◽  
pp. 1207-1220 ◽  
Author(s):  
Mona Wilcke ◽  
Ludger Johannes ◽  
Thierry Galli ◽  
Véronique Mayau ◽  
Bruno Goud ◽  
...  

Several GTPases of the Rab family, known to be regulators of membrane traffic between organelles, have been described and localized to various intracellular compartments. Rab11 has previously been reported to be associated with the pericentriolar recycling compartment, post-Golgi vesicles, and the trans-Golgi network (TGN). We compared the effect of overexpression of wild-type and mutant forms of Rab11 on the different intracellular transport steps in the endocytic/degradative and the biosynthetic/exocytic pathways in HeLa cells. We also studied transport from endosomes to the Golgi apparatus using the Shiga toxin B subunit (STxB) and TGN38 as reporter molecules. Overexpression of both Rab11 wild-type (Rab11wt) and mutants altered the localization of the transferrrin receptor (TfR), internalized Tf, the STxB, and TGN38. In cells overexpressing Rab11wt and in a GTPase-deficient Rab11 mutant (Rab11Q70L), these proteins were found in vesicles showing characteristics of sorting endosomes lacking cellubrevin (Cb). In contrast, they were redistributed into an extended tubular network, together with Cb, in cells overexpressing a dominant negative mutant of Rab11 (Rab11S25N). This tubularized compartment was not accessible to Tf internalized at temperatures <20°C, suggesting that it is of recycling endosomal origin. Overexpression of Rab11wt, Rab11Q70L, and Rab11S25N also inhibited STxB and TGN38 transport from endosomes to the TGN. These results suggest that Rab11 influences endosome to TGN trafficking primarily by regulating membrane distribution inside the early endosomal pathway.


1996 ◽  
Vol 7 (3) ◽  
pp. 415-423
Author(s):  
D A Troyer ◽  
A Bouton ◽  
R Bedolla ◽  
R Padilla

Stress fibers, composed of actin filaments, converge upon and associate with a number of proteins, including focal adhesion kinase (p125FAK), and integrin receptors to form areas of close contact between cells and the extracellular matrix referred to as focal adhesions. Treatment of mesangial cells with cAMP-elevating agents causes a loss of focal adhesions, fragmentation of stress fibers, and decreased tyrosine phosphorylation of p125FAK. Thrombin reverses these effects of cAMP, and this model can be used to address some of the cellular mechanisms involved in regulating the loss and formation of focal adhesions. This study reports the effects of cAMP and thrombin on mesangial cell shape, distribution of actin, formation of stress fibers, and tyrosine phosphorylation of p125FAK. cAMP-treated cells display a condensed cell body with slender processes that traverse the area formerly covered by the cell. Addition of thrombin to these cells restores actin filaments (stress fibers) and increases tyrosine phosphorylation of p125FAK, and the cells resume a flattened morphology, even in the continued presence of cAMP-elevating agents. Peptides that mimic the tethered ligand portion of the thrombin receptor have the same effects on cell morphology and stress fiber formation as thrombin. In selected experiments, agents that disrupt either stress fibers (cytochalasin D) or microtubules (nocodazole; Sigma Chemical, St. Louis, MO) were used to examine the role of these cytoskeletal elements in thrombin-induced restoration of focal adhesions. Cytochalasin D blocked the ability of thrombin to restore focal adhesions and phosphorylate p125FAK. The effects of nocodazole, an agent that destabilizes microtubules (but which has no known receptor), are very similar to those of thrombin. The findings discussed in this study indicate that thrombin can modulate the formation of focal adhesions. The organization of stress fibers and microtubules is apparently intimately related to the phosphorylation of p125FAK and can be modulated by soluble receptor agonists such as thrombin or via altered polymerization of microtubules.


1995 ◽  
Vol 131 (2) ◽  
pp. 525-537 ◽  
Author(s):  
E Crowley ◽  
A F Horwitz

We have investigated the mechanisms by which fibroblasts release their adhesions to the extracellular matrix substrata using a permeabilized cell system in which the adhesions remain relatively stable. A large number of different molecules were assayed for their effect on focal adhesion stability using immunofluorescence with antibodies against different focal adhesion constituents. ATP uniquely stimulates a rapid breakdown of focal adhesions, and at high ATP concentrations (> 5 mM), many cells are released from the dish. The remaining cells appear contracted with talin, alpha-actinin, and vinculin localized diffusely throughout the cell. Integrin containing tracks of variable intensity outline the regions where cells had resided before they detached from the substratum. At lower ATP concentrations (0.5-5 mM) the cells remain spread; however the focal adhesion components, including integrin, show an array of phenotypes ranging from diffusely localized throughout the cell to a localization in small, thin focal adhesions. Okadaic acid, a serine, threonine phosphatase inhibitor, enhances the contracted phenotype, even at low concentrations (0.5 mM) of ATP. The localization of focal adhesion components is different in okadaic acid-treated cells. In highly contracted cells, integrin is present in tracks where the cells resided before the contraction; however focal adhesions are no longer apparent. Talin, vinculin, and alpha-actinin localize in trabecular networks toward the periphery of the cell. Interestingly, phosphotyrosine staining as well as nascent, intracellular integrin precedes the recruitment of focal adhesion constituents into the trabecular network. The ATP-stimulated focal adhesion breakdown appears to operate through two mechanisms. First, ATP stimulates the tyrosine phosphorylation of several cytoskeletally associated proteins. These tyrosine phosphorylations correlated well with focal adhesion breakdown. Furthermore, addition of a recombinant, constitutively active tyrosine phosphatase inhibits both the tyrosine phosphorylations and the breakdown of the focal adhesions. None of the major tyrosine phosphoproteins are FAK, integrin, tensin, paxillin, or other phosphoproteins implicated in focal adhesion assembly. The second mechanism is cell contraction. High ATP concentrations, or lower ATP concentrations in the presence of okadaic acid induce cell contraction. Inhibiting the contraction by addition of a heptapeptide IRICRKG, which blocks the actin-myosin interaction, also inhibits focal adhesion breakdown. Neither the peptide nor the phosphatase inhibits focal adhesion breakdown under all conditions suggesting that both tension and tyrosine phosphorylations mediate the release of adhesions.


1999 ◽  
Vol 144 (5) ◽  
pp. 1019-1031 ◽  
Author(s):  
Alexandre Angers-Loustau ◽  
Jean-François Côté ◽  
Alain Charest ◽  
Donald Dowbenko ◽  
Susan Spencer ◽  
...  

In this article, we show that, in transfected COS-1 cells, protein tyrosine phosphatase (PTP)-PEST translocates to the membrane periphery following stimulation by the extracellular matrix protein fibronectin. When plated on fibronectin, PTP-PEST (−/−) fibroblasts display a strong defect in motility. 3 h after plating on fibronectin, the number and size of vinculin containing focal adhesions were greatly increased in the homozygous PTP-PEST mutant cells as compared with heterozygous cells. This phenomenon appears to be due in part to a constitutive increase in tyrosine phosphorylation of p130CAS, a known PTP-PEST substrate, paxillin, which associates with PTP-PEST in vitro, and focal adhesion kinase (FAK). Another effect of this constitutive hyperphosphorylation, consistent with the focal adhesion regulation defect, is that (−/−) cells spread faster than the control cell line when plated on fibronectin. In the PTP-PEST (−/−) cells, an increase in affinity for the SH2 domains of Src and Crk towards p130CAS was also observed. In (−/−) cells, we found a significant increase in the level of tyrosine phosphorylation of PSTPIP, a cleavage furrow–associated protein that interacts physically with all PEST family members. An effect of PSTPIP hyperphosphorylation appears to be that some cells remain attached at the site of the cleavage furrow for an extended period of time. In conclusion, our data suggest PTP-PEST plays a dual role in cell cytoskeleton organization, by promoting the turnover of focal adhesions required for cell migration, and by directly or indirectly regulating the proline, serine, threonine phosphatase interacting protein (PSTPIP) tyrosine phosphorylation level which may be involved in regulating cleavage furrow formation or disassembly during normal cell division.


2021 ◽  
Vol 23 (1) ◽  
pp. 162
Author(s):  
Yu-Shan Lin ◽  
Yi-Hsin Lin ◽  
MyHang Nguyen Thi ◽  
Shih-Chuan Hsiao ◽  
Wen-Tai Chiu

The dysregulation of store-operated Ca2+ entry (SOCE) promotes cancer progression by changing Ca2+ levels in the cytosol or endoplasmic reticulum. Stromal interaction molecule 1 (STIM1), a component of SOCE, is upregulated in several types of cancer and responsible for cancer cell migration, invasion, and metastasis. To explore the impact of STIM1-mediated SOCE on the turnover of focal adhesion (FA) and cell migration, we overexpressed the wild-type and constitutively active or dominant negative variants of STIM1 in an osteosarcoma cell line. In this study, we hypothesized that STIM1-mediated Ca2+ elevation may increase cell migration. We found that constitutively active STIM1 dramatically increased the Ca2+ influx, calpain activity, and turnover of FA proteins, such as the focal adhesion kinase (FAK), paxillin, and vinculin, which impede the cell migration ability. In contrast, dominant negative STIM1 decreased the turnover of FA proteins as its wild-type variant compared to the cells without STIM1 overexpression while promoting cell migration. These unexpected results suggest that cancer cells need an appropriate amount of Ca2+ to control the assembly and disassembly of focal adhesions by regulating calpain activity. On the other hand, overloaded Ca2+ results in excessive calpain activity, which is not beneficial for cancer metastasis.


2003 ◽  
Vol 14 (6) ◽  
pp. 2520-2529 ◽  
Author(s):  
Carol Wadham ◽  
Jennifer R Gamble ◽  
Mathew A Vadas ◽  
Yeesim Khew-Goodall

Cell-cell adhesion regulates processes important in embryonal development, normal physiology, and cancer progression. It is regulated by various mechanisms including tyrosine phosphorylation. We have previously shown that the protein tyrosine phosphatase Pez is concentrated at intercellular junctions in confluent, quiescent monolayers but is nuclear in cells lacking cell-cell contacts. We show here with an epithelial cell model that Pez localizes to the adherens junctions in confluent monolayers. A truncation mutant lacking the catalytic domain acts as a dominant negative mutant to upregulate tyrosine phosphorylation at adherens junctions. We identified β-catenin, a component of adherens junctions, as a substrate of Pez by a “substrate trapping” approach and by in vitro dephosphorylation with recombinant Pez. Consistent with this, ectopic expression of the dominant negative mutant caused an increase in tyrosine phosphorylation of β-catenin, demonstrating that Pez regulates the level of tyrosine phosphorylation of adherens junction proteins, including β-catenin. Increased tyrosine phosphorylation of adherens junction proteins has been shown to decrease cell-cell adhesion, promoting cell migration as a result. Accordingly, the dominant negative Pez mutant enhanced cell motility in an in vitro “wound” assay. This suggests that Pez is also a regulator of cell motility, most likely through its action on cell-cell adhesion.


2000 ◽  
Vol 11 (8) ◽  
pp. 2565-2575 ◽  
Author(s):  
Atsuko Kodama ◽  
Takashi Matozaki ◽  
Atsunori Fukuhara ◽  
Mitsuhiro Kikyo ◽  
Masamitsu Ichihashi ◽  
...  

Hepatocyte growth factor/scatter factor (HGF/SF) induces cell scattering through the tyrosine kinase–type HGF/SF receptor c-Met. We have previously shown that Rho small G protein (Rho) is involved in the HGF/SF-induced scattering of Madin-Darby canine kidney (MDCK) cells by regulating at least the assembly and disassembly of stress fibers and focal adhesions, but it remains unknown how c-Met regulates Rho activity. We have found here a novel signaling pathway of c-Met consisting of SHP-2-Rho that regulates the assembly and disassembly of stress fibers and focal adhesions in MDCK cells. SHP-2 is a protein-tyrosine phosphatase that contains src homology-2 domains. Expression of a dominant negative mutant of SHP-2 (SHP-2-C/S) markedly increased the formation of stress fibers and focal adhesions in MDCK cells and inhibited their scattering. C3, a Clostridium botulinum ADP-ribosyltransferase, and Y-27632, a specific inhibitor for ROCK, reversed the stimulatory effect of SHP-2-C/S on stress fiber formation and the inhibitory effect on cell scattering. Vav2 is a GDP/GTP exchange protein for Rho. Expression of a dominant negative mutant of Vav2 blocked the stimulatory effect of SHP-2-C/S on stress fiber formation. Conversely, expression of mutants of Vav2 that increased stress fiber formation inhibited HGF/SF-induced cell scattering. These results indicate that SHP-2 physiologically modulates the activity of Rho to form stress fibers and focal adhesions and thereby regulates HGF/SF-induced cell scattering. In addition, Vav2 may be involved in the SHP-2-Rho pathway.


1996 ◽  
Vol 318 (2) ◽  
pp. 609-614 ◽  
Author(s):  
D. Margriet OUWENS ◽  
Harald M. M. MIKKERS ◽  
Gerard C. M. van der ZON ◽  
Matthias STEIN-GERLACH ◽  
Axel ULLRICH ◽  
...  

Insulin stimulation of fibroblasts rapidly induces the tyrosine dephosphorylation of proteins of 68 kDa and 125 kDa, in addition to the tyrosine phosphorylation of the insulin receptor β-chain, insulin receptor substrates 1 and 2, and Shc. Using specific antibodies, the 68 kDa and 125 kDa proteins were identified as paxillin and focal adhesion kinase (pp125FAK) respectively. We have examined whether dephosphorylation of paxillin and pp125FAK requires interaction of the cells with the extracellular matrix. For this, cells were grown on poly(l-lysine) plates, and the tyrosine phosphorylation of pp125FAK and paxillin was increased by addition of lysophosphatidic acid. Under these conditions, insulin still induced the complete dephosphorylation of pp125FAK and paxillin, indicating that this process can occur independently of the interaction of integrins with extracellular matrix proteins. We also studied whether dephosphorylation of pp125FAK and paxillin results from the action of a phosphotyrosine phosphatase. It was found that phenylarsine oxide, a phosphotyrosine phosphatase inhibitor, prevented the insulin-induced dephosphorylation of pp125FAK and paxillin. Furthermore, this insulin-induced dephosphorylation was also impaired in cells expressing a dominant-negative mutant of phosphotyrosine phosphatase 1D (PTP 1D). Thus we have identified paxillin as a target for dephosphorylation by insulin. In addition, we have obtained evidence that the insulin-mediated dephosphorylation of paxillin and pp125FAK requires active PTP 1D.


1999 ◽  
Vol 276 (6) ◽  
pp. C1271-C1281 ◽  
Author(s):  
Michael S. Goligorsky ◽  
Husna Abedi ◽  
Eisei Noiri ◽  
Alice Takhtajan ◽  
Sheri Lense ◽  
...  

A permissive role of nitric oxide (NO) in endothelial cell migration and angiogenesis promoted by vascular endothelial growth factor (VEGF), endothelin, and substance P has previously been established. The present studies were designed to examine the mechanism(s) involved in the NO effect on focal adhesions. Time-lapse videomicroscopy of human umbilical vein endothelial cells (HUVECs) plated on the silicone rubber substrate revealed that unstimulated cells were constantly remodeling the wrinkling pattern, indicative of changing tractional forces. Application of NO donors reversibly decreased the degree of wrinkling, consistent with the release of tractional forces exerted by focal adhesions and stress fibers. Morphometric and immunocytochemical analyses showed that NO inhibited adhesion and spreading of HUVECs and attenuated recruitment of paxillin to focal adhesions. NO also had a profound dose-dependent effect on the formation of stress fibers by HUVECs. De novo formation of focal adhesions in HUVECs was significantly diminished in the presence of NO donors. Migration of HUVECs showed an absolute requirement for the functional NO synthase. NO donors did not interfere with focal adhesion kinase recruitment to focal adhesions but affected the state of its tyrosine phosphorylation, as judged from the results of immunoprecipitation and immunoblotting experiments. Videomicroscopy of HUVECs presented with VEGF in a micropipette showed that the rate of cell migration was slowed down by NO synthase inhibition as well as by inhibition of tyrosine phosphorylation. Collectively, these data indicate that NO reversibly releases tractional forces exerted by spreading endothelial cells via interference with the de novo formation of focal adhesions, tyrosine phosphorylation of components of focal adhesion complexes, and assembly of stress fibers.


2015 ◽  
Vol 26 (16) ◽  
pp. 2895-2912 ◽  
Author(s):  
Virginia Ojeda ◽  
Javier Robles-Valero ◽  
María Barreira ◽  
Xosé R. Bustelo

Coronin 1A (Coro1A) is involved in cytoskeletal and signaling events, including the regulation of Rac1 GTPase– and myosin II–dependent pathways. Mutations that generate truncated or unstable Coro1A proteins cause immunodeficiencies in both humans and rodents. However, in the case of the peripheral T-cell–deficient ( Ptcd) mouse strain, the immunodeficiency is caused by a Glu-26-Lys mutation that targets a surface-exposed residue unlikely to affect the intramolecular architecture and stability of the protein. Here we report that this mutation induces pleiotropic effects in Coro1A protein, including the exacerbation of Coro1A-dependent actin-binding and -bundling activities; the formation of large meshworks of Coro1AE26K-decorated filaments endowed with unusual organizational, functional, and staining properties; and the elimination of Coro1A functions associated with both Rac1 and myosin II signaling. By contrast, it does not affect the ability of Coro1A to stimulate the nuclear factor of activated T-cells (NF-AT). Coro1AE26K is not a dominant-negative mutant, indicating that its pathological effects are derived from the inability to rescue the complete loss of the wild-type counterpart in cells. These results indicate that Coro1AE26K behaves as either a recessive gain-of-function or loss-of-function mutant protein, depending on signaling context and presence of the wild-type counterpart in cells.


Sign in / Sign up

Export Citation Format

Share Document