scholarly journals Tyrosine phosphorylation and cytoskeletal tension regulate the release of fibroblast adhesions.

1995 ◽  
Vol 131 (2) ◽  
pp. 525-537 ◽  
Author(s):  
E Crowley ◽  
A F Horwitz

We have investigated the mechanisms by which fibroblasts release their adhesions to the extracellular matrix substrata using a permeabilized cell system in which the adhesions remain relatively stable. A large number of different molecules were assayed for their effect on focal adhesion stability using immunofluorescence with antibodies against different focal adhesion constituents. ATP uniquely stimulates a rapid breakdown of focal adhesions, and at high ATP concentrations (> 5 mM), many cells are released from the dish. The remaining cells appear contracted with talin, alpha-actinin, and vinculin localized diffusely throughout the cell. Integrin containing tracks of variable intensity outline the regions where cells had resided before they detached from the substratum. At lower ATP concentrations (0.5-5 mM) the cells remain spread; however the focal adhesion components, including integrin, show an array of phenotypes ranging from diffusely localized throughout the cell to a localization in small, thin focal adhesions. Okadaic acid, a serine, threonine phosphatase inhibitor, enhances the contracted phenotype, even at low concentrations (0.5 mM) of ATP. The localization of focal adhesion components is different in okadaic acid-treated cells. In highly contracted cells, integrin is present in tracks where the cells resided before the contraction; however focal adhesions are no longer apparent. Talin, vinculin, and alpha-actinin localize in trabecular networks toward the periphery of the cell. Interestingly, phosphotyrosine staining as well as nascent, intracellular integrin precedes the recruitment of focal adhesion constituents into the trabecular network. The ATP-stimulated focal adhesion breakdown appears to operate through two mechanisms. First, ATP stimulates the tyrosine phosphorylation of several cytoskeletally associated proteins. These tyrosine phosphorylations correlated well with focal adhesion breakdown. Furthermore, addition of a recombinant, constitutively active tyrosine phosphatase inhibits both the tyrosine phosphorylations and the breakdown of the focal adhesions. None of the major tyrosine phosphoproteins are FAK, integrin, tensin, paxillin, or other phosphoproteins implicated in focal adhesion assembly. The second mechanism is cell contraction. High ATP concentrations, or lower ATP concentrations in the presence of okadaic acid induce cell contraction. Inhibiting the contraction by addition of a heptapeptide IRICRKG, which blocks the actin-myosin interaction, also inhibits focal adhesion breakdown. Neither the peptide nor the phosphatase inhibits focal adhesion breakdown under all conditions suggesting that both tension and tyrosine phosphorylations mediate the release of adhesions.

1999 ◽  
Vol 144 (5) ◽  
pp. 1019-1031 ◽  
Author(s):  
Alexandre Angers-Loustau ◽  
Jean-François Côté ◽  
Alain Charest ◽  
Donald Dowbenko ◽  
Susan Spencer ◽  
...  

In this article, we show that, in transfected COS-1 cells, protein tyrosine phosphatase (PTP)-PEST translocates to the membrane periphery following stimulation by the extracellular matrix protein fibronectin. When plated on fibronectin, PTP-PEST (−/−) fibroblasts display a strong defect in motility. 3 h after plating on fibronectin, the number and size of vinculin containing focal adhesions were greatly increased in the homozygous PTP-PEST mutant cells as compared with heterozygous cells. This phenomenon appears to be due in part to a constitutive increase in tyrosine phosphorylation of p130CAS, a known PTP-PEST substrate, paxillin, which associates with PTP-PEST in vitro, and focal adhesion kinase (FAK). Another effect of this constitutive hyperphosphorylation, consistent with the focal adhesion regulation defect, is that (−/−) cells spread faster than the control cell line when plated on fibronectin. In the PTP-PEST (−/−) cells, an increase in affinity for the SH2 domains of Src and Crk towards p130CAS was also observed. In (−/−) cells, we found a significant increase in the level of tyrosine phosphorylation of PSTPIP, a cleavage furrow–associated protein that interacts physically with all PEST family members. An effect of PSTPIP hyperphosphorylation appears to be that some cells remain attached at the site of the cleavage furrow for an extended period of time. In conclusion, our data suggest PTP-PEST plays a dual role in cell cytoskeleton organization, by promoting the turnover of focal adhesions required for cell migration, and by directly or indirectly regulating the proline, serine, threonine phosphatase interacting protein (PSTPIP) tyrosine phosphorylation level which may be involved in regulating cleavage furrow formation or disassembly during normal cell division.


1998 ◽  
Vol 143 (3) ◽  
pp. 861-873 ◽  
Author(s):  
Carlos O. Arregui ◽  
Janne Balsamo ◽  
Jack Lilien

To investigate the role of nonreceptor protein tyrosine phosphatase 1B (PTP1B) in β1-integrin– mediated adhesion and signaling, we transfected mouse L cells with normal and catalytically inactive forms of the phosphatase. Parental cells and cells expressing the wild-type or mutant PTP1B were assayed for (a) adhesion, (b) spreading, (c) presence of focal adhesions and stress fibers, and (d) tyrosine phosphorylation. Parental cells and cells expressing wild-type PTP1B show similar morphology, are able to attach and spread on fibronectin, and form focal adhesions and stress fibers. In contrast, cells expressing the inactive PTP1B have a spindle-shaped morphology, reduced adhesion and spreading on fibronectin, and almost a complete absence of focal adhesions and stress fibers. Attachment to fibronectin induces tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin in parental cells and cells transfected with the wild-type PTP1B, while in cells transfected with the mutant PTP1B, such induction is not observed. Additionally, in cells expressing the mutant PTP1B, tyrosine phosphorylation of Src is enhanced and activity is reduced. Lysophosphatidic acid temporarily reverses the effects of the mutant PTP1B, suggesting the existence of a signaling pathway triggering focal adhesion assembly that bypasses the need for active PTP1B. PTP1B coimmunoprecipitates with β1-integrin from nonionic detergent extracts and colocalizes with vinculin and the ends of actin stress fibers in focal adhesions. Our data suggest that PTP1B is a critical regulatory component of integrin signaling pathways, which is essential for adhesion, spreading, and formation of focal adhesions.


1993 ◽  
Vol 13 (2) ◽  
pp. 785-791
Author(s):  
M D Schaller ◽  
C A Borgman ◽  
J T Parsons

Integrins play a central role in cellular adhesion and anchorage of the cytoskeleton and participate in the generation of intracellular signals, including tyrosine phosphorylation. We have recently isolated a cDNA encoding a unique, focal adhesion-associated protein tyrosine kinase (FAK) that is a component of an integrin-mediated signal transduction pathway. Here we report the isolation of cDNAs encoding the C-terminal, noncatalytic domain of the FAK kinase, termed FRNK (FAK-related nonkinase). Both the FAK- and FRNK-encoded polypeptides, pp125FAK and p41/p43FRNK, are expressed in normal chicken embryo cells. pp125FAK and p41/p43FRNK were localized to focal adhesions, suggesting that pp125FAK is directed to the focal adhesions by sequences within its C-terminal domain. We also show that the fibronectin-dependent increase in tyrosine phosphorylation of pp125FAK is accompanied by a concomitant posttranslational modification of p41FRNK.


1996 ◽  
Vol 271 (3) ◽  
pp. C763-C771 ◽  
Author(s):  
T. S. Chu ◽  
H. Tsuganezawa ◽  
Y. Peng ◽  
A. Cano ◽  
M. Yanagisawa ◽  
...  

Endothelin-1 (ET-1) binding to ETB receptors increases the activity of the apical membrane Na+/H+ antiporter (NHE3) of renal proximal tubule and cultured OKP cells. In OKPETB6 cells, a clonal cell line of OKP cells that overexpresses ETB receptors, ET-1-induced increases in Na+/H+ antiporter activity are mediated 50% by Ca2(+)-dependent pathways and 50% by tyrosine kinase pathways. ET-1 induces tyrosine phosphorylation of proteins of 68, 110, 125, 130, and 210 kDa. ET-1-induced tyrosine phosphorylation is mediated by the ETB receptor and is not dependent on increases in cell Ca2+ or protein kinase C. The 68-, 110-, 125-, and 130-kDa phosphoproteins are cytosolic, whereas the 210-kDa phosphoprotein is an integral membrane protein. Immunoprecipitation studies showed that the 68-kDa protein is paxillin and the 125-kDa protein is p125FAK (focal adhesion kinase). Cytochalasin D, which disrupts focal adhesions, prevented ET-1-induced tyrosine phosphorylation of paxillin, p110, p125FAK, and p130 but did not prevent tyrosine phosphorylation of p210 and did not prevent ET-1-induced increases in Na+/H+ antiporter activity. Thus 50% of ETB receptor-induced Na+/H+ antiporter activation is mediated by tyrosine kinase pathways, possibly involving p210. ETB receptor activation also induces tyrosine phosphorylation of focal adhesion proteins, but this is not required for antiporter activation.


1995 ◽  
Vol 15 (5) ◽  
pp. 2635-2645 ◽  
Author(s):  
M D Schaller ◽  
J T Parsons

Paxillin, a focal-adhesion-associated protein, becomes phosphorylated in response to a number of stimuli which also induce the tyrosine phosphorylation of the focal-adhesion-associated protein tyrosine kinase pp125FAK. On the basis of their colocalization and coordinate phosphorylation, paxillin is a candidate for a substrate of pp125FAK. We describe here conditions under which the phosphorylation of paxillin on tyrosine is pp125FAK dependent, supporting the hypothesis that paxillin phosphorylation is regulated by pp125FAK. pp125FAK must localize to focal adhesions and become autophosphorylated to induce paxillin phosphorylation. Phosphorylation of paxillin on tyrosine creates binding sites for the SH2 domains of Crk, Csk, and Src. We identify two sites of phosphorylation as tyrosine residues 31 and 118, each of which conforms to the Crk SH2 domain binding motif, (P)YXXP. These observations suggest that paxillin serves as an adapter protein, similar to insulin receptor substrate 1, and that pp125FAK may regulate the formation of signaling complexes by directing the phosphorylation of paxillin on tyrosine.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Nen-Chung Chang ◽  
Aming Chor-Ming Lin ◽  
Cheng-Chen Hsu ◽  
Jung-Sheng Liu ◽  
Leo Tsui ◽  
...  

Lipid metabolism in visceral fat cells is correlated with metabolic syndrome and cardiovascular diseases. Okadaic-acid, a 38-carbon fatty acid isolated from the black spongeHalichondria okadai, can stimulate lipolysis by promoting the phosphorylation of several proteins in adipocytes. However, the mechanism of okadaic acid-induced lipolysis and the effects of okadaic acid on lipid-droplet-associated proteins (perilipins and beta-actin) remain unclear. We isolated adipocytes from rat epididymal fat pads and treated them with isoproterenol and/or okadaic acid to estimate lipolysis by measuring glycerol release. Incubating adipocytes with okadaic acid stimulated time-dependent lipolysis. Lipid-droplet-associated perilipins and beta-actin were analyzed by immunoblotting and immunofluorescence, and the association of perilipin A and B was found to be decreased in response to isoproterenol or okadaic acid treatment. Moreover, okadaic-acid treatment could enhance isoproterenol-mediated lipolysis, whereas treatment of several inhibitors such as KT-5720 (PKA inhibitor), calphostin C (PKC inhibitor), or KT-5823 (PKG inhibitor) did not attenuate okadaic-acid-induced lipolysis. By contrast, vanadyl acetylacetonate (tyrosine phosphatase inhibitor) blocked okadaic-acid-dependent lipolysis. These results suggest that okadaic acid induces the phosphorylation and detachment of lipid-droplet-associated perilipin A and B from the lipid droplet surface and thereby leads to accelerated lipolysis.


1996 ◽  
Vol 7 (3) ◽  
pp. 415-423
Author(s):  
D A Troyer ◽  
A Bouton ◽  
R Bedolla ◽  
R Padilla

Stress fibers, composed of actin filaments, converge upon and associate with a number of proteins, including focal adhesion kinase (p125FAK), and integrin receptors to form areas of close contact between cells and the extracellular matrix referred to as focal adhesions. Treatment of mesangial cells with cAMP-elevating agents causes a loss of focal adhesions, fragmentation of stress fibers, and decreased tyrosine phosphorylation of p125FAK. Thrombin reverses these effects of cAMP, and this model can be used to address some of the cellular mechanisms involved in regulating the loss and formation of focal adhesions. This study reports the effects of cAMP and thrombin on mesangial cell shape, distribution of actin, formation of stress fibers, and tyrosine phosphorylation of p125FAK. cAMP-treated cells display a condensed cell body with slender processes that traverse the area formerly covered by the cell. Addition of thrombin to these cells restores actin filaments (stress fibers) and increases tyrosine phosphorylation of p125FAK, and the cells resume a flattened morphology, even in the continued presence of cAMP-elevating agents. Peptides that mimic the tethered ligand portion of the thrombin receptor have the same effects on cell morphology and stress fiber formation as thrombin. In selected experiments, agents that disrupt either stress fibers (cytochalasin D) or microtubules (nocodazole; Sigma Chemical, St. Louis, MO) were used to examine the role of these cytoskeletal elements in thrombin-induced restoration of focal adhesions. Cytochalasin D blocked the ability of thrombin to restore focal adhesions and phosphorylate p125FAK. The effects of nocodazole, an agent that destabilizes microtubules (but which has no known receptor), are very similar to those of thrombin. The findings discussed in this study indicate that thrombin can modulate the formation of focal adhesions. The organization of stress fibers and microtubules is apparently intimately related to the phosphorylation of p125FAK and can be modulated by soluble receptor agonists such as thrombin or via altered polymerization of microtubules.


1996 ◽  
Vol 270 (5) ◽  
pp. C1430-C1437 ◽  
Author(s):  
K. M. Lee ◽  
M. L. Villereal

Bradykinin (BK) stimulates protein tyrosine phosphorylation in human foreskin fibroblasts (K.-M. Lee, K. Toscas, and M. L. Villereal, J. Biol. Chem. 268:9945-9948, 1993). The major tyrosine phosphorylation occurs in proteins of a molecular mass of 130 and 70 kDa. In this report, we demonstrate that focal adhesion-associated tyrosine kinase, pp125FAK, is one component of the 130-kDa phosphotyrosine band. The BK-stimulated pp125FAK tyrosine phosphorylation level is well correlated with increased kinase activity, as assessed by in vitro immune complex kinase assays. We have identified paxillin, a protein that is localized in focal adhesions, as a component of the 70-kDa phosphotyrosine band. In addition to identifying the two proteins responsible for the major phosphotyrosine bands, we also report that pp60c-src is tyrosine phosphorylated and activated in response to BK, as analyzed by immunoblotting and in vitro kinase assays, respectively. These findings indicate, for the first time, that the BK receptor is coupled to the important protooncogene c-src and that the src pathway may mediate some of the events downstream from BK binding.


Sign in / Sign up

Export Citation Format

Share Document