scholarly journals A "MICROTUBULE" IN PLANT CELL FINE STRUCTURE

1963 ◽  
Vol 19 (1) ◽  
pp. 239-250 ◽  
Author(s):  
M. C. Ledbetter ◽  
K. R. Porter

This paper reports an electron microscope examination of the cortices of some plant cells engaged in wall formation. Previous studies of similar material fixed in OSO4 alone have disclosed discontinuities in the plasma membrane and other evidence of inadequate fixation. After glutaraldehyde, used as a fixative in this present study, the general preservation of cortical fine structure is greatly improved. This is shown, for example, by the first evidence of slender tubules, 230 to 270 A in diameter and of indeterminate length, in plant cells of this type. They have been found in the cortical regions of cells of two angiosperms and one gymnosperm, representing all the material so far studied following this method of fixation. The tubules are identical in morphology to those also observed here in the mitotic spindles of plant cells, except that the latter have a somewhat smaller diameter. It is noted that the cortical tubules are in a favored position to govern cytoplasmic streaming and to exert an influence over the disposition of cell wall materials. In this regard it may be of some significance that the tubules just beneath the surface of the protoplast mirror the orientation of the cellulose microfibrils of the adjacent cell walls.

1956 ◽  
Vol 4 (3) ◽  
pp. 193 ◽  
Author(s):  
AB Wardrop

Autoradiographs have been prepared from parenchyma isolated from Avena coleoptile segments grown in a medium containing labelled glucose. The autoradiographs show that there is no concentration of radioactive material at the cell tips and labelled cellulose appears to be uniformly distributed in the cell wall. Electron micrographs of similar material show that the cellulose microfibrils are almost transversely oriented on the inner surface of the cell wall but are considerably dispersed from this direction on the outer surface. From this evidence it is concluded that growth in coleoptile parenchyma is not of the "bipolar" or "mosaic" types previously suggested, but corresponds to the "multi-net growth" of Roelofsen and Houwink. In addition a study has been made of the relation of microfibril orientation to cell form in parenchyma of onion root and in roots after treatment with colchicine, from which it is concluded that the final microfibril orientation on the outer wall surface is determined by the extent and polarity of its surface growth.


Holzforschung ◽  
2004 ◽  
Vol 58 (3) ◽  
pp. 219-225 ◽  
Author(s):  
L. Donaldson ◽  
A. Frankland

Abstract Iodine staining has been used to study the orientation of cellulose microfibrils in wood using light microscopy. The aim of this work was to understand the exact nature of the staining reaction with iodine and to provide insight into the properties and organisation of the wood cell wall. Based on transmission electron microscopy it is apparent that precipitation of the iodine following treatment with nitric acid results in the formation of crystal cavities within the cell wall, which follow the orientation of the cellulose microfibrils. There is no evidence that iodine precipitates within “drying checks” as previously speculated. High resolution confocal reflectance microscopy of crystal cavity orientation indicates that the microfibril arrangement within pit borders can be both spiral and circular. Crystal cavities are much more abundant within the S1 layer than elsewhere. All of the cells examined had crystal cavities in the S1 region, which may be related to the reduced lignification at the S1/S2 boundary resulting in greater porosity of the cell wall at this location. Within the S2 region, clusters of crystal cavities are randomly distributed and occur in widely varying numbers among adjacent cell walls, suggesting variations in the porosity of the S2 wall within and among adjacent tracheids. Cavities form preferentially within more electron lucent regions of the cell wall. The random nature of crystal cavity formation within S2 clusters probably reflects the underlying random nature of the cell wall nanostructure. We conclude that iodine staining can provide important clues to the nanostructural properties of tracheid cell walls.


Science ◽  
1984 ◽  
Vol 225 (4662) ◽  
pp. 621-623 ◽  
Author(s):  
E. L. SMOOT ◽  
T. N. TAYLOR

IAWA Journal ◽  
2005 ◽  
Vol 26 (2) ◽  
pp. 161-174 ◽  
Author(s):  
Hisashi Abe ◽  
Ryo Funada

We examined the orientation of cellulose microfibrils (Mfs) in the cell walls of tracheids in some conifer species by field emission-scanning electron microscopy (FE-SEM) and developed a model on the basis of our observations. Mfs depositing on the primary walls in differentiating tracheids were not well-ordered. The predominant orientation of the Mfs changed from longitudinal to transverse, as the differentiation of tracheids proceeded. The first Mfs to be deposited in the outer layer of the secondary wall (S1 layer) were arranged as an S-helix. Then the orientation of Mfs changed gradually, with rotation in the clockwise direction as viewed from the lumen side of tracheids, from the outermost to the innermost S1 layer. Mfs in the middle layer of the secondary wall (S2 layer) were oriented in a steep Z-helix with a deviation of less than 15° within the layer. The orientation of Mfs in the inner layer of the secondary wall (S3 layer) changed, with rotation in a counterclockwise direction as viewed from the lumen side, from the outermost to the innermost S3 layer. The angle of orientation of Mfs that were deposited on the innermost S3 layer varied among tracheids from 40° in a Z-helix to 20° in an S-helix.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Jiawei Wang ◽  
Eiji Minami ◽  
Mohd Asmadi ◽  
Haruo Kawamoto

AbstractThe thermal degradation reactivities of hemicellulose and cellulose in wood cell walls are significantly different from the thermal degradation behavior of the respective isolated components. Furthermore, the degradation of Japanese cedar (Cryptomeria japonica, a softwood) is distinct from that of Japanese beech (Fagus crenata, a hardwood). Lignin and uronic acid are believed to play crucial roles in governing this behavior. In this study, the effects of ball milling for various durations of time on the degradation reactivities of cedar and beech woods were evaluated based on the recovery rates of hydrolyzable sugars from pyrolyzed wood samples. The applied ball-milling treatment cleaved the lignin β-ether bonds and reduced the crystallinity of cellulose, as determined by X-ray diffraction. Both xylan and glucomannan degraded in a similar temperature range, although the isolated components exhibited different reactivities because of the catalytic effect of uronic acid bound to the xylose chains. These observations can be explained by the more homogeneous distribution of uronic acid in the matrix of cell walls as a result of ball milling. As observed for holocelluloses, cellulose in the ball-milled woods degraded in two temperature ranges (below 320 °C and above); a significant amount of cellulose degraded in the lower temperature range, which significantly changed the shapes of the thermogravimetric curves. This report compares the results obtained for cedar and beech woods, and discusses them in terms of the thermal degradation of the matrix and cellulose microfibrils in wood cell walls and role of lignin. Such information is crucial for understanding the pyrolysis and heat treatment of wood.


1976 ◽  
Vol 22 (2) ◽  
pp. 403-411 ◽  
Author(s):  
M.J. Packard ◽  
S.M. Stack

Numerous vesicles were observed among the microtubules of the “preprophase” band in prophase cells from root tips of Allium cepa. The content of these vesicles looks similar to the matrix of adjacent cell walls, and these vesicles often appear to be involved in exocytosis. In addition, the cell walls perpendicular to the plane of (beneath) the preprophase band are often differentially thickened compared to the walls lying parallel to the plane of the band. Our interpretation of these observations is that the preprophase band may direct or channel vesicles containing precursors of the cell wall to localized regions of wall synthesis. The incorporation of constituents of the cell wall into a narrow region defined by the position of the preprophase band may be a mechanism that ensures unidirecitonal growth of meristematic cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wilson Horner ◽  
Jacob O. Brunkard

Plant cells are connected by plasmodesmata (PD), nanoscopic channels in cell walls that allow diverse cytosolic molecules to move between neighboring cells. PD transport is tightly coordinated with physiology and development, although the range of signaling pathways that influence PD transport has not been comprehensively defined. Several plant hormones, including salicylic acid (SA) and auxin, are known to regulate PD transport, but the effects of other hormones have not been established. In this study, we provide evidence that cytokinins promote PD transport in leaves. Using a green fluorescent protein (GFP) movement assay in the epidermis of Nicotiana benthamiana, we have shown that PD transport significantly increases when leaves are supplied with exogenous cytokinins at physiologically relevant concentrations or when a positive regulator of cytokinin responses, ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 5 (AHP5), is overexpressed. We then demonstrated that silencing cytokinin receptors, ARABIDOPSIS HISTIDINE KINASE 3 (AHK3) or AHK4 or overexpressing a negative regulator of cytokinin signaling, AAHP6, significantly decreases PD transport. These results are supported by transcriptomic analysis of mutants with increased PD transport (ise1–4), which show signs of enhanced cytokinin signaling. We concluded that cytokinins contribute to dynamic changes in PD transport in plants, which will have implications in several aspects of plant biology, including meristem patterning and development, regulation of the sink-to-source transition, and phytohormone crosstalk.


1959 ◽  
Vol 12 (4) ◽  
pp. 395 ◽  
Author(s):  
J Dainty ◽  
AB Hope

Measurements of ion exchange were made between isolated cell walls of Ohara australis and an external solution. Comparison between intact cells and cell walls showed that nearly all the easily exchangeable cations are located in the cell wall. The wall is hown to consist of "water free space" (W.F.S.) and "Donnan free space" (D.F.S.); the concentration of in diffusible anions in the D.F.S. is about O� 6 equivjl. This finding is contrary to past suggestions that the D.F.S. is in the cytoplasm of plant cells.


CONVERSAZIONES were held this year on 9 May and 27 June. At the first conversazione twenty-seven exhibits and two films were shown. The fine structure of plant roots in relation to transport of nutrient ions and water was demonstrated by Dr D. T. Clarkson of the A.R.C. Letcombe Laboratory, Wantage and Dr A. W. Robards of the Department of Biology, University of York. Two major pathways by which nutrients and water move radially across the cortex towards the central vascular tissue have been distinguished by the use of tracer studies of adsorption by different zones of intact root systems, microautoradiography and electron microscopy. Movement can be apoplastic through cell walls, or symplastic between cells joined by plasmodesmata. As the root ages, structural changes in the endodermis reduce movement in the former pathway but the symplast is not interrupted by the elaboration of endodermal walls because plasmodesmatal connexions remain intact. These observations help explain the contrasting extent to which different ions and water reach the shoot from young and mature parts of root systems.


Sign in / Sign up

Export Citation Format

Share Document