scholarly journals Sorting switch of mitochondrial presequence translocase involves coupling of motor module to respiratory chain

2007 ◽  
Vol 179 (6) ◽  
pp. 1115-1122 ◽  
Author(s):  
Nils Wiedemann ◽  
Martin van der Laan ◽  
Dana P. Hutu ◽  
Peter Rehling ◽  
Nikolaus Pfanner

The mitochondrial presequence translocase transports preproteins to either matrix or inner membrane. Two different translocase forms have been identified: the matrix transport form, which binds the heat-shock protein 70 (Hsp70) motor, and the inner membrane–sorting form, which lacks the motor but contains translocase of inner mitochondrial membrane 21 (Tim21). The sorting form interacts with the respiratory chain in a Tim21-dependent manner. It is unknown whether the respiratory chain–bound translocase transports preproteins and how the switch between sorting form and motor form occurs. We report that the respiratory chain–bound translocase contains preproteins in transit and, surprisingly, not only sorted but also matrix-targeted preproteins. Presequence translocase-associated motor (Pam) 16 and 18, two regulatory components of the six-subunit motor, interact with the respiratory chain independently of Tim21. Thus, the respiratory chain–bound presequence translocase is not only active in preprotein sorting to the inner membrane but also in an early stage of matrix translocation. The motor does not assemble en bloc with the translocase but apparently in a step-wise manner with the Pam16/18 module before the Hsp70 core.

1980 ◽  
Vol 188 (2) ◽  
pp. 329-335 ◽  
Author(s):  
M E Koller ◽  
I Romslo

Rat liver mitochondria accumulate protoporphyrin IX from the suspending medium into the inner membrane in parallel with the magnitude of the transmembrane K+ gradient (K+in/K+out). Only protoporphyrin IX taken up in parallel with the transmembrane K+ gradient is available for haem synthesis. Coproporphyrins (isomers I and III) are not taken up by the mitochondria. The results support the suggestion by Elder & Evans [(1978) Biochem. J. 172, 345-347] that the prophyrin to be taken up by the inner mitochondrial membrane belongs to the protoporphyrin(ogen) IX series. Protoporphyrin IX at concentrations above 15 nmol/mg of protein has detrimental effects on the structural and functional integrity of the mitochondria. The relevance of these effects to the hepatic lesion in erythropoietic protoporphyria is discussed.


1988 ◽  
Vol 90 (4) ◽  
pp. 707-716
Author(s):  
J.R. Nilsson

A study was made of the effects of cisplatin, cis-dichlorodiammineplatinum(II) (5–250 mg l-1), on the physiology and fine structure of Tetrahymena. The physiological effects observed were dose-dependent. Endocytosis was inhibited reversibly in all, but late in the high, concentrations. After an initial dose-related increase, due to division of cells most advanced in the cell cycle, proliferation ceased for at least two normal cell generations (6 h) in 50 and 100 mg drug l-1, but for 24 h in 250 mg l-1, after which multiplication was resumed in a dose-dependent manner. Exposure to cisplatin resulted in the appearance of small, refractive granules and platinum (i.e. electron-dense material) accumulated in these granules. Fine structural observations of cells exposed to 250 mg drug l-1 showed nucleolar fusion and appearance initially of lipid droplets, dense granules and autophagosomes. A time-dependent redistribution of cell organelles was revealed by morphometry; in particular, the mitochondria increased in number, but decreased in size. Moreover, after prolonged treatment (24 h) and without cell division, the inner mitochondrial membrane had diminished and the ratio of the inner to the outer mitochondrial membrane was only half of the value for control mitochondria. Concomitantly with this decrease, the cell content of ATP was reduced to a similar extent. The findings indicate a specific action of cisplatin on mitochondria, resembling that induced in Tetrahymena by chloramphenicol and methotrexate.


1993 ◽  
Vol 13 (12) ◽  
pp. 7364-7371 ◽  
Author(s):  
J Blom ◽  
M Kübrich ◽  
J Rassow ◽  
W Voos ◽  
P J Dekker ◽  
...  

The essential yeast gene MPI1 encodes a mitochondrial membrane protein that is possibly involved in protein import into the organelle (A. C. Maarse, J. Blom, L. A. Grivell, and M. Meijer, EMBO J. 11:3619-3628, 1992). For this report, we determined the submitochondrial location of the MPI1 gene product and investigated whether it plays a direct role in the translocation of preproteins. By fractionation of mitochondria, the mature protein of 44 kDa was localized to the mitochondrial inner membrane and therefore termed MIM44. Import of the precursor of MIM44 required a membrane potential across the inner membrane and involved proteolytic processing of the precursor. A preprotein in transit across the mitochondrial membranes was cross-linked to MIM44, whereas preproteins arrested on the mitochondrial surface or fully imported proteins were not cross-linked. When preproteins were arrested at two distinct stages of translocation across the inner membrane, only preproteins at an early stage of translocation could be cross-linked to MIM44. Moreover, solubilized MIM44 was found to interact with in vitro-synthesized preproteins. We conclude that MIM44 is a component of the mitochondrial inner membrane import machinery and interacts with preproteins in an early step of translocation.


2016 ◽  
Vol 39 (5) ◽  
pp. 2014-2024 ◽  
Author(s):  
Mariela Arias-Hidalgo ◽  
Jan Hegermann ◽  
Georgios Tsiavaliaris ◽  
Fabrizio Carta ◽  
Claudiu T. Supuran ◽  
...  

Background/Aims: Across the mitochondrial membrane an exceptionally intense exchange of O2 and CO2 occurs. We have asked, 1) whether the CO2 permeability, PM,CO2, of this membrane is also exceptionally high, and 2) whether the mitochondrial membrane is sufficiently permeable to HCO3- to make passage of this ion an alternative pathway for exit of metabolically produced CO2. Methods: The two permeabilities were measured using the previously published mass spectrometric 18O exchange technique to study suspensions of mitochondria freshly isolated from rat livers. The mitochondria were functionally and morphologically in excellent condition. Results: The intramitochondrial CA activity was exclusively localized in the matrix. PM,CO2 of the inner mitochondrial membrane was 0.33 (SD ± 0.03) cm/s, which is the highest value reported for any biological membrane, even two times higher than PM,CO2 of the red cell membrane. PM,HCO3- was 2· 10-6 (SD ± 2· 10-6) cm/s and thus extremely low, almost 3 orders of magnitude lower than PM,HCO3- of the red cell membrane. Conclusion: The inner mitochondrial membrane is almost impermeable to HCO3- but extremely permeable to CO2. Since gas channels are absent, this membrane constitutes a unique example of a membrane of very high gas permeability due to its extremely low content of cholesterol.


1973 ◽  
Vol 56 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Clinton D. Stoner ◽  
Howard D. Sirak

In bovine heart mitochondria bongkrekic acid at concentrations as low as about 4 nmol/mg protein (a) completely inhibits phosphorylation of exogenous adenosine diphosphate (ADP) and dephosphorylation of exogenous adenosine triphosphate (ATP), (b) completely reverses atractyloside inhibition of inner membrane contraction induced by exogenous adenine nucleotides, and (c) decreases the amount of adenine nucleotide required to elicit maximal exogenous adenine nucleotide-induced inner membrane contraction to a level which appears to correspond closely with the concentration of contractile, exogenous adenine nucleotide binding sites Bongkrekic acid at concentrations greater than 4 nmol/mg protein induces inner membrane contraction which seems to depend on the presence of endogenous ADP and/or ATP. The findings appear to be consistent with the interpretations (a) that the inner mitochondrial membrane contains two types of contractile, adenine nucleotide binding sites, (b) that the two sites differ markedly with regard to adenine nucleotide affinity, (c) that the high affinity site is identical with the adenine nucleotide exchange carrier, (d) that the low affinity site is accessible exclusively to endogenous adenine nucleotides and is largely unoccupied in the absence of bongkrekic acid, and (e) that bongkrekic acid increases the affinity of both sites in proportion to the amount of the antibiotic bound to the inner membrane.


2004 ◽  
Vol 377 (2) ◽  
pp. 281-287 ◽  
Author(s):  
Rhian R. MORGAN ◽  
Rachel ERRINGTON ◽  
George H. ELDER

Protoporphyrinogen oxidase (PPOX; EC 1.3.3.4), the penultimate enzyme of haem biosynthesis, is a nucleus-encoded flavoprotein strongly associated with the outer surface of the inner mitochondrial membrane. It is attached to this membrane by an unknown mechanism that appears not to involve a membrane-spanning domain. The pathway for its import to mitochondria and insertion into the inner membrane has not been established. We have fused human PPOXs containing N-terminal deletions, C-terminal deletions or missense mutations to yellow fluorescent protein (YFP) and have used these constructs to investigate the mitochondrial import of PPOX in human cells. We show that all the information required for efficient import is contained within the first 250 amino acid residues of human PPOX and that targeting to mitochondria is prevented by fusion of YFP to the N-terminus. Deletion of between 151 and 175 residues from the N-terminus is required to abolish import, whereas shorter deletions impair its efficiency. Fully efficient targeting appears to require both a major targeting signal, the whole or part of which is contained between residues 151 and 175, and which may be involved in anchoring to the inner mitochondrial membrane, together with interaction between this region and a sequence(s) within the first 150 residues. These features suggest that the mechanism for import of human PPOX to mitochondria differs from those identified for the translocation of nucleus-encoded, membrane-spanning, inner membrane proteins. In addition, a missense mutation outside this region (Val335→Gly) prevented targeting to mitochondria and delayed the appearance of YFP fluorescence. This mutation appeared to prevent import by a direct effect on protein folding rather than by altering a sequence required for targeting. It may lead to sequestration of the PPOX–YFP construct in an unfolded conformation, followed by proteolytic degradation, possibly through enhanced binding to a cytosolic chaperone protein.


2020 ◽  
Author(s):  
Niklas Klusch ◽  
Jennifer Senkler ◽  
Özkan Yildiz ◽  
Werner Kühlbrandt ◽  
Hans-Peter Braun

SUMMARYMitochondrial complex I is the main site for electron transfer to the respiratory chain and generates much of the proton gradient across the inner mitochondrial membrane. It is composed of two arms, which form a conserved L-shape. We report the structures of the intact, 47-subunit mitochondrial complex I from Arabidopsis thaliana and from the green alga Polytomella sp. at 3.2 and 3.3 Å resolution. In both, a heterotrimeric γ-carbonic anhydrase domain is attached to the membrane arm on the matrix side. Two states are resolved in A. thaliana complex I, with different angles between the two arms and different conformations of the ND1 loop near the quinol binding site. The angle appears to depend on a bridge domain, which links the peripheral arm to the membrane arm and includes an unusual ferredoxin. We suggest that the bridge domain regulates complex I activity.One sentence summaryThe activity of complex I depends on the angel between its two arms, which, in plants, is adjusted by a protein bridge that includes an unusual ferredoxin.The authors responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) are: Hans-Peter Braun ([email protected]) and Werner Kühlbrandt ([email protected]).


Life ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 277
Author(s):  
Christina Wasmus ◽  
Jan Dudek

The heart is the most energy-consuming organ in the human body. In heart failure, the homeostasis of energy supply and demand is endangered by an increase in cardiomyocyte workload, or by an insufficiency in energy-providing processes. Energy metabolism is directly associated with mitochondrial redox homeostasis. The production of toxic reactive oxygen species (ROS) may overwhelm mitochondrial and cellular ROS defense mechanisms in case of heart failure. Mitochondria are essential cell organelles and provide 95% of the required energy in the heart. Metabolic remodeling, changes in mitochondrial structure or function, and alterations in mitochondrial calcium signaling diminish mitochondrial energy provision in many forms of cardiomyopathy. The mitochondrial respiratory chain creates a proton gradient across the inner mitochondrial membrane, which couples respiration with oxidative phosphorylation and the preservation of energy in the chemical bonds of ATP. Akin to other mitochondrial enzymes, the respiratory chain is integrated into the inner mitochondrial membrane. The tight association with the mitochondrial phospholipid cardiolipin (CL) ensures its structural integrity and coordinates enzymatic activity. This review focuses on how changes in mitochondrial CL may be associated with heart failure. Dysfunctional CL has been found in diabetic cardiomyopathy, ischemia reperfusion injury and the aging heart. Barth syndrome (BTHS) is caused by an inherited defect in the biosynthesis of cardiolipin. Moreover, a dysfunctional CL pool causes other types of rare inherited cardiomyopathies, such as Sengers syndrome and Dilated Cardiomyopathy with Ataxia (DCMA). Here we review the impact of cardiolipin deficiency on mitochondrial functions in cellular and animal models. We describe the molecular mechanisms concerning mitochondrial dysfunction as an incitement of cardiomyopathy and discuss potential therapeutic strategies.


2018 ◽  
Vol 19 (11) ◽  
pp. 3411 ◽  
Author(s):  
Eduarda Fernandes ◽  
Telma Soares ◽  
Hugo Gonçalves ◽  
Sigrid Bernstorff ◽  
Maria Real Oliveira ◽  
...  

Diclofenac (DCF), the most widely consumed non-steroidal anti-inflammatory drug (NSAID) worldwide, is associated with adverse typical effects, including gastrointestinal (GI) complications. The present study aims to better understand the topical toxicity induced by DCF using membrane models that mimic the physiological, biophysical, and chemical environments of GI mucosa segments. For this purpose, phospholipidic model systems that mimic the GI protective lining and lipid models of the inner mitochondrial membrane were used together with a wide set of techniques: derivative spectrophotometry to evaluate drug distribution at the membrane; steady-state and time-resolved fluorescence to predict drug location at the membrane; fluorescence anisotropy, differential scanning calorimetry (DSC), dynamic light scattering (DLS), and calcein leakage studies to evaluate the drug-induced disturbance on membrane microviscosity and permeability; and small- and wide-angle X-ray scattering studies (SAXS and WAXS, respectively), to evaluate the effects of DCF at the membrane structure. Results demonstrated that DCF interacts chemically with the phospholipids of the GI protective barrier in a pH-dependent manner and confirmed the DCF location at the lipid headgroup region, as well as DCF’s higher distribution at mitochondrial membrane contact points where the impairment of biophysical properties is consistent with the uncoupling effects reported for this drug.


BMC Biology ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Heike Rampelt ◽  
Iva Sucec ◽  
Beate Bersch ◽  
Patrick Horten ◽  
Inge Perschil ◽  
...  

Abstract Background The mitochondrial pyruvate carrier (MPC) plays a central role in energy metabolism by transporting pyruvate across the inner mitochondrial membrane. Its heterodimeric composition and homology to SWEET and semiSWEET transporters set the MPC apart from the canonical mitochondrial carrier family (named MCF or SLC25). The import of the canonical carriers is mediated by the carrier translocase of the inner membrane (TIM22) pathway and is dependent on their structure, which features an even number of transmembrane segments and both termini in the intermembrane space. The import pathway of MPC proteins has not been elucidated. The odd number of transmembrane segments and positioning of the N-terminus in the matrix argues against an import via the TIM22 carrier pathway but favors an import via the flexible presequence pathway. Results Here, we systematically analyzed the import pathways of Mpc2 and Mpc3 and report that, contrary to an expected import via the flexible presequence pathway, yeast MPC proteins with an odd number of transmembrane segments and matrix-exposed N-terminus are imported by the carrier pathway, using the receptor Tom70, small TIM chaperones, and the TIM22 complex. The TIM9·10 complex chaperones MPC proteins through the mitochondrial intermembrane space using conserved hydrophobic motifs that are also required for the interaction with canonical carrier proteins. Conclusions The carrier pathway can import paired and non-paired transmembrane helices and translocate N-termini to either side of the mitochondrial inner membrane, revealing an unexpected versatility of the mitochondrial import pathway for non-cleavable inner membrane proteins.


Sign in / Sign up

Export Citation Format

Share Document