scholarly journals Metabolic Alterations Caused by Defective Cardiolipin Remodeling in Inherited Cardiomyopathies

Life ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 277
Author(s):  
Christina Wasmus ◽  
Jan Dudek

The heart is the most energy-consuming organ in the human body. In heart failure, the homeostasis of energy supply and demand is endangered by an increase in cardiomyocyte workload, or by an insufficiency in energy-providing processes. Energy metabolism is directly associated with mitochondrial redox homeostasis. The production of toxic reactive oxygen species (ROS) may overwhelm mitochondrial and cellular ROS defense mechanisms in case of heart failure. Mitochondria are essential cell organelles and provide 95% of the required energy in the heart. Metabolic remodeling, changes in mitochondrial structure or function, and alterations in mitochondrial calcium signaling diminish mitochondrial energy provision in many forms of cardiomyopathy. The mitochondrial respiratory chain creates a proton gradient across the inner mitochondrial membrane, which couples respiration with oxidative phosphorylation and the preservation of energy in the chemical bonds of ATP. Akin to other mitochondrial enzymes, the respiratory chain is integrated into the inner mitochondrial membrane. The tight association with the mitochondrial phospholipid cardiolipin (CL) ensures its structural integrity and coordinates enzymatic activity. This review focuses on how changes in mitochondrial CL may be associated with heart failure. Dysfunctional CL has been found in diabetic cardiomyopathy, ischemia reperfusion injury and the aging heart. Barth syndrome (BTHS) is caused by an inherited defect in the biosynthesis of cardiolipin. Moreover, a dysfunctional CL pool causes other types of rare inherited cardiomyopathies, such as Sengers syndrome and Dilated Cardiomyopathy with Ataxia (DCMA). Here we review the impact of cardiolipin deficiency on mitochondrial functions in cellular and animal models. We describe the molecular mechanisms concerning mitochondrial dysfunction as an incitement of cardiomyopathy and discuss potential therapeutic strategies.

2018 ◽  
Vol 51 (1) ◽  
pp. 201-216 ◽  
Author(s):  
Arwa M.T. Al-Nahdi ◽  
Annie John ◽  
Haider  Raza

Background/Aims: Numerous studies have reported overproduction of reactive oxygen species (ROS) and alterations in mitochondrial energy metabolism in the development of diabetes and its complications. The potential protective effects of N-acetylcysteine (NAC) in diabetes have been reported in many therapeutic studies. NAC has been shown to reduce oxidative stress and enhance redox potential in tissues protecting them against oxidative stress associated complications in diabetes. In the current study, we aimed to investigate the molecular mechanisms of the protective action of NAC on STZ-induced toxicity in insulin secreting Rin-5F pancreatic β-cells. Methods: Rin-5F cells were grown to 80% confluence and then treated with 10mM STZ for 24h in the presence or absence of 10mM NAC. After sub-cellular fractionation, oxidative stress, GSH-dependent metabolism and mitochondrial respiratory functions were studied using spectrophotometric, flow cytometric and Western blotting techniques. Results: Our results showed that STZ-induced oxidative stress and apoptosis caused inhibition in insulin secretion while NAC treatment restored the redox homeostasis, enhanced insulin secretion in control cells and prevented apoptosis in STZ-treated cells. Moreover, NAC attenuated the inhibition of mitochondrial functions induced by STZ through partial recovery of the mitochondrial enzymes and restoration of membrane potential. STZ-induced DNA damage and expression of apoptotic proteins were significantly inhibited in NAC-treated cells. Conclusion: Our results suggest that the cytoprotective action of NAC is mediated via suppression of oxidative stress and apoptosis and restoration of GSH homeostasis and mitochondrial bioenergetics. This study may, thus, help in better understanding the cellular defense mechanisms of pancreatic β-cells against STZ-induced cytotoxicity.


2004 ◽  
Vol 286 (5) ◽  
pp. C1139-C1151 ◽  
Author(s):  
Catherine M. O'Reilly ◽  
Kevin E. Fogarty ◽  
Robert M. Drummond ◽  
Richard A. Tuft ◽  
John V. Walsh

The mitochondrial membrane potential (ΔΨm) underlies many mitochondrial functions, including Ca2+ influx into the mitochondria, which allows them to serve as buffers of intracellular Ca2+. Spontaneous depolarizations of ΔΨm, flickers, have been observed in isolated mitochondria and intact cells using the fluorescent cationic lipophile tetramethylrhodamine ethyl ester (TMRE), which distributes across the inner mitochondrial membrane in accordance with the Nernst equation. Flickers in cardiomyocytes have been attributed to uptake of Ca2+ released from the sarcoplasmic reticulum (SR) via ryanodine receptors in focal transients called Ca2+ sparks. We have shown previously that an increase in global Ca2+ in smooth muscle cells causes an increase in mitochondrial Ca2+ and depolarization of ΔΨm. Here we sought to determine whether flickers in smooth muscle cells are caused by uptake of Ca2+ released focally in Ca2+ sparks. High-speed three-dimensional imaging was used to monitor ΔΨm in freshly dissociated myocytes from toad stomach that were simultaneously voltage clamped at 0 mV to ensure the cytosolic TMRE concentration was constant and equal to the low level in the bath (2.5 nM). This approach allows quantitative analysis of flickers as we have previously demonstrated. Depletion of SR Ca2+ not only failed to eliminate flickers but rather increased their magnitude and frequency somewhat. Flickers were not altered in magnitude or frequency by ryanodine or xestospongin C, inhibitors of intracellular Ca2+ release, or by cyclosporin A, an inhibitor of the permeability transition pore. Focal Ca2+ release from the SR does not cause flickers in the cells employed here.


2010 ◽  
Vol 57 (4) ◽  
Author(s):  
Elena A Belyaeva

To elucidate the molecular mechanisms of the protective action of stigmatellin (an inhibitor of complex III of mitochondrial electron transport chain, mtETC) against the heavy metal-induced cytotoxicity, we tested its effectiveness against mitochondrial membrane permeabilization produced by heavy metal ions Cd²(+), Hg²(+), Cu²(+) and Zn²(+), as well as by Ca²(+) (in the presence of P(i)) or Se (in form of Na₂SeO₃) using isolated rat liver mitochondria. It was shown that stigmatellin modulated mitochondrial swelling produced by these metals/metalloids in the isotonic sucrose medium in the presence of ascorbate plus tetramethyl-p-phenylenediamine (complex IV substrates added for energization of the mitochondria). It was found that stigmatellin and other mtETC inhibitors enhanced the mitochondrial swelling induced by selenite. However, in the same medium, all the mtETC inhibitors tested as well as cyclosporin A and bongkrekic acid did not significantly affect Cu²(+)-induced swelling. In contrast, the high-amplitude swelling produced by Cd²(+), Hg²(+), Zn²(+), or Ca²(+) plus P(i) was significantly depressed by these inhibitors. Significant differences in the action of these metals/metalloids on the redox status of pyridine nucleotides, transmembrane potential and mitochondrial respiration were also observed. In the light of these results as well as the data from the recent literature, our hypothesis on a possible involvement of the respiratory supercomplex, formed by complex I (P-site) and complex III (S-site) in the mitochondrial permeabilization mediated by the mitochondrial transition pore, is updated.


2021 ◽  
Vol 11 ◽  
Author(s):  
Nantaporn Haskins ◽  
Shivaprasad Bhuvanendran ◽  
Claudio Anselmi ◽  
Anna Gams ◽  
Tomas Kanholm ◽  
...  

Mitochondrial enzymes involved in energy transformation are organized into multiprotein complexes that channel the reaction intermediates for efficient ATP production. Three of the mammalian urea cycle enzymes: N-acetylglutamate synthase (NAGS), carbamylphosphate synthetase 1 (CPS1), and ornithine transcarbamylase (OTC) reside in the mitochondria. Urea cycle is required to convert ammonia into urea and protect the brain from ammonia toxicity. Urea cycle intermediates are tightly channeled in and out of mitochondria, indicating that efficient activity of these enzymes relies upon their coordinated interaction with each other, perhaps in a cluster. This view is supported by mutations in surface residues of the urea cycle proteins that impair ureagenesis in the patients, but do not affect protein stability or catalytic activity. We find the NAGS, CPS1, and OTC proteins in liver mitochondria can associate with the inner mitochondrial membrane (IMM) and can be co-immunoprecipitated. Our in-silico analysis of vertebrate NAGS proteins, the least abundant of the urea cycle enzymes, identified a protein-protein interaction region present only in the mammalian NAGS protein—“variable segment,” which mediates the interaction of NAGS with CPS1. Use of super resolution microscopy showed that NAGS, CPS1 and OTC are organized into clusters in the hepatocyte mitochondria. These results indicate that mitochondrial urea cycle proteins cluster, instead of functioning either independently or in a rigid multienzyme complex.


2020 ◽  
Author(s):  
Nantaporn Haskins ◽  
Shivaprasad Bhuvanendran ◽  
Anna Gams ◽  
Tomas Kanholm ◽  
Kristen M. Kocher ◽  
...  

AbstractMitochondrial enzymes involved in energy transformation are organized into multiprotein complexes that channel the reaction intermediates for efficient ATP production. Three of the mammalian urea cycle enzymes: N-acetylglutamate synthase (NAGS), carbamylphosphate synthetase 1 (CPS1), and ornithine transcarbamylase (OTC) reside in the mitochondria. Urea cycle is required to convert ammonia into urea and protect the brain from ammonia toxicity. Urea cycle intermediates are tightly channeled in and out of mitochondria, indicating that efficient activity of these enzymes relies upon their coordinated interaction with each other perhaps in a multiprotein complex. This view is supported by mutations in surface residues of the urea cycle proteins that impair urea genesis in the patients but do not affect protein stability or catalytic activity. Further, we find one third of the NAGS, CPS1 and OTC proteins in liver mitochondria can associate with the inner mitochondrial membrane (IMM), and co-immunoprecipitate. Our in silico analysis of vertebrate NAGS proteins, the least abundant of the urea cycle enzymes, identified a region we call ‘variable segment’ present only in the mammalian NAGS protein. We experimentally confirmed that NAGS variable segment mediates the interaction of NAGS with CPS1. Use of Gated-Stimulation Emission Depletion (gSTED) super resolution microscopy showed that in situ, NAGS, CPS1 and OTC are organized into clusters. These results are consistent with mitochondrial urea cycle proteins forming a cluster instead of functioning either independently or in a rigid multienzyme complex.


2018 ◽  
Vol 399 (5) ◽  
pp. 453-465
Author(s):  
Benedikt Beckert ◽  
Amparo Acker-Palmer ◽  
Walter Volknandt

Abstract Employing hippocampal synaptosomes from amyloid precursor protein (APP)-deleted mice we analyzed the immediate effects of amyloid beta peptide 42 (Aβ42) peptide in its oligomeric or fibrillar assembly or of soluble amyloid precursor protein alpha (sAPPα) protein on their bioenergetic activity. Upon administration of oligomeric Aβ42 peptide for 30 min we observed a robust decrease both in mitochondrial activity and in mitochondrial membrane potential (MMP). In contrast the respective fibrillary or scrambled peptides showed no effect, indicating that inhibition strictly depends on the oligomerization status of the peptide. Hippocampal synaptosomes from old APP-KO mice revealed a further reduction of their already impaired bioenergetic activity upon incubation with 10 μm Aβ42 peptide. In addition we evaluated the influence of the sAPPα protein on mitochondrial activity of hippocampal synaptosomes derived from young or old APP-KO animals. In neither case 20 nm nor 200 nm sAPPα protein had an effect on mitochondrial metabolic activity. Our findings demonstrate that hippocampal synaptosomes derived from APP-KO mice are a most suitable model system to evaluate the impact of Aβ42 peptide on its bioenergetic activity and to further elucidate the molecular mechanisms underlying the impairments by oligomeric Aβ42 on mitochondrial function. Our data demonstrate that extracellular Aβ42 peptide is taken up into synaptosomes where it immediately attenuates mitochondrial activity.


2018 ◽  
Vol 62 (3) ◽  
pp. 341-360 ◽  
Author(s):  
Lisa Tilokani ◽  
Shun Nagashima ◽  
Vincent Paupe ◽  
Julien Prudent

Mitochondria are highly dynamic organelles undergoing coordinated cycles of fission and fusion, referred as ‘mitochondrial dynamics’, in order to maintain their shape, distribution and size. Their transient and rapid morphological adaptations are crucial for many cellular processes such as cell cycle, immunity, apoptosis and mitochondrial quality control. Mutations in the core machinery components and defects in mitochondrial dynamics have been associated with numerous human diseases. These dynamic transitions are mainly ensured by large GTPases belonging to the Dynamin family. Mitochondrial fission is a multi-step process allowing the division of one mitochondrion in two daughter mitochondria. It is regulated by the recruitment of the GTPase Dynamin-related protein 1 (Drp1) by adaptors at actin- and endoplasmic reticulum-mediated mitochondrial constriction sites. Drp1 oligomerization followed by mitochondrial constriction leads to the recruitment of Dynamin 2 to terminate membrane scission. Inner mitochondrial membrane constriction has been proposed to be an independent process regulated by calcium influx. Mitochondrial fusion is driven by a two-step process with the outer mitochondrial membrane fusion mediated by mitofusins 1 and 2 followed by inner membrane fusion, mediated by optic atrophy 1. In addition to the role of membrane lipid composition, several members of the machinery can undergo post-translational modifications modulating these processes. Understanding the molecular mechanisms controlling mitochondrial dynamics is crucial to decipher how mitochondrial shape meets the function and to increase the knowledge on the molecular basis of diseases associated with morphology defects. This article will describe an overview of the molecular mechanisms that govern mitochondrial fission and fusion in mammals.


1996 ◽  
Vol 43 (2) ◽  
pp. 349-360 ◽  
Author(s):  
F E Sluse

A set of metabolite carriers operates the traffic of numerous molecules consumed or produced in mitochondrial matrix and/or cytosolic compartments. As their existence has been predicted by the chemiosmotic theory, the first challenge, in the late sixties, was to prove their presence in the inner mitochondrial membrane and to describe the various transports carried out. The second challenge was to understand their mechanisms by the kinetic approach in intact mitochondria (seventies). The third challenge (late seventies-eighties) was to isolate and to reconstitute the carriers in liposomes in order to characterize the proteins and to establish the concept of a structural and a functional family as well as some structure-function relationship with the help of primary sequences. Genetics, molecular biology and genomic sequencing bring the fourth challenge (nineties): a raising number of putative carriers becomes known only by their primary sequences but their functions have to be discovered. The actual challenge of the future is the elucidation of the ternary structure of carrier proteins that together with site-directed mutagenesis and kinetic mechanism will permit to advance in the understanding of molecular mechanisms of transport processes.


2018 ◽  
Vol 11 (4) ◽  
pp. 306-315 ◽  
Author(s):  
Arpan Kumar Maiti ◽  
Nimai Chandra Saha ◽  
Goutam Paul ◽  
Kishore Dhara

Abstract Nickel is a potential neurotoxic pollutant inflicting damage in living organisms, including fish, mainly through oxidative stress. Previous studies have demonstrated the impact of nickel toxicity on mitochondrial function, but there remain lacunae on the damage inflicted at mitochondrial respiratory level. Deficient mitochondrial function usually affects the activities of important adenosinetriphosphatases responsible for the maintenance of normal neuronal function, namely Na+K+ATPase, as explored in our study. Previous reports demonstrated the dysfunction of this enzyme upon nickel exposure but the contributing factors for the inhibition of this enzyme remained unexplored. The main purpose of this study was to elucidate the impact of nickel neurotoxicity on mitochondrial respiratory complexes and Na+K+ATPase in the piscine brain and to determine the contributing factors that had an impact on the same. Adult Clarias batrachus were exposed to nickel treated water at 10% and 20% of the 96 h LC50 value (41 mg.l−1) respectively and sampled on 20, 40 and 60 days. Exposure of fish brain to nickel led to partial inhibition of complex IV of mitochondrial respiratory chain, however, the activities of complex I, II and III remained unaltered. This partial inhibition of mitochondrial respiratory chain might have been sufficient to lower mitochondrial energy production in mitochondria that contributed to the partial dysfunction of Na+K+ATPase. Besides energy depletion other contributing factors were involved in the dysfunction of this enzyme, like loss of thiol groups for enzyme activity and lipid peroxidation-derived end products that might have induced conformational and functional changes. However, providing direct evidence for such conformational and functional changes of Na+K+ATPase was beyond the scope of the present study. In addition, immunoblotting results also showed a decrease in Na+K+ATPase protein expression highlighting the impact of nickel neurotoxicity on the expression of the enzyme itself. The implication of the inhibition of mitochondrial respiration and Na+K+ATPase dysfunction was the neuronal death as evidenced by enhanced caspase-3 and caspase-9 activities. Thus, this study established the deleterious impact of nickel neurotoxicity on mitochondrial functions in the piscine brain and identified probable contributing factors that can act concurrently in the inhibition of Na+K+ATPase. This study also provided a vital clue about the specific areas that the therapeutic agents should target to counter nickel neurotoxicity.


Sign in / Sign up

Export Citation Format

Share Document