scholarly journals SNARE bundle and syntaxin N-peptide constitute a minimal complement for Munc18-1 activation of membrane fusion

2010 ◽  
Vol 190 (1) ◽  
pp. 55-63 ◽  
Author(s):  
Jingshi Shen ◽  
Shailendra S. Rathore ◽  
Lavan Khandan ◽  
James E. Rothman

Sec1/Munc18 (SM) proteins activate intracellular membrane fusion through binding to cognate SNAP receptor (SNARE) complexes. The synaptic target membrane SNARE syntaxin 1 contains a highly conserved Habc domain, which connects an N-peptide motif to the SNARE core domain and is thought to participate in the binding of Munc18-1 (the neuronal SM protein) to the SNARE complex. Unexpectedly, we found that mutation or complete removal of the Habc domain had no effect on Munc18-1 stimulation of fusion. The central cavity region of Munc18-1 is required to stimulate fusion but not through its binding to the syntaxin Habc domain. SNAP-25, another synaptic SNARE subunit, contains a flexible linker and exhibits an atypical conjoined Qbc configuration. We found that neither the linker nor the Qbc configuration is necessary for Munc18-1 promotion of fusion. As a result, Munc18-1 activates a SNARE complex with the typical configuration, in which each of the SNARE core domains is individually rooted in the membrane bilayer. Thus, the SNARE four-helix bundle and syntaxin N-peptide constitute a minimal complement for Munc18-1 activation of fusion.

2011 ◽  
Vol 22 (14) ◽  
pp. 2612-2619 ◽  
Author(s):  
Shailendra S. Rathore ◽  
Nilanjan Ghosh ◽  
Yan Ouyang ◽  
Jingshi Shen

Soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs) form a four-helix coiled-coil bundle that juxtaposes two bilayers and drives a basal level of membrane fusion. The Sec1/Munc18 (SM) protein binds to its cognate SNARE bundle and accelerates the basal fusion reaction. The question of how the topological arrangement of the SNARE helices affects the reactivity of the fusion proteins remains unanswered. Here we address the problem for the first time in a reconstituted system containing both SNAREs and SM proteins. We find that to be fusogenic a SNARE topology must support both basal fusion and SM stimulation. Certain topological combinations of exocytic SNAREs result in basal fusion but cannot support SM stimulation, whereas other topologies support SM stimulation without inducing basal fusion. It is striking that of all the possible topological combinations of exocytic SNARE helices, only one induces efficient fusion. Our results suggest that the intracellular membrane fusion complex is designed to fuse bilayers according to one genetically programmed topology.


2010 ◽  
Vol 21 (8) ◽  
pp. 1362-1374 ◽  
Author(s):  
Marion Weber ◽  
Konstantin Chernov ◽  
Hilkka Turakainen ◽  
Gerd Wohlfahrt ◽  
Maria Pajunen ◽  
...  

Sec1p/Munc18 (SM) family proteins regulate SNARE complex function in membrane fusion through their interactions with syntaxins. In addition to syntaxins, only a few SM protein interacting proteins are known and typically, their binding modes with SM proteins are poorly characterized. We previously identified Mso1p as a Sec1p-binding protein and showed that it is involved in membrane fusion regulation. Here we demonstrate that Mso1p and Sec1p interact at sites of exocytosis and that the Mso1p–Sec1p interaction site depends on a functional Rab GTPase Sec4p and its GEF Sec2p. Random and targeted mutagenesis of Sec1p, followed by analysis of protein interactions, indicates that Mso1p interacts with Sec1p domain 1 and that this interaction is important for membrane fusion. In many SM family proteins, domain 1 binds to a N-terminal peptide of a syntaxin family protein. The Sec1p-interacting syntaxins Sso1p and Sso2p lack the N-terminal peptide. We show that the putative N-peptide binding area in Sec1p domain 1 is important for Mso1p binding, and that Mso1p can interact with Sso1p and Sso2p. Our results suggest that Mso1p mimics N-peptide binding to facilitate membrane fusion.


2018 ◽  
Author(s):  
Junyi Jiao ◽  
Mengze He ◽  
Sarah A. Port ◽  
Richard W. Baker ◽  
Yonggang Xu ◽  
...  

AbstractSec1/Munc18-family (SM) proteins are required for SNARE-mediated membrane fusion, but their mechanism(s) of action remain controversial. Using single-molecule force spectroscopy, we found that the SM protein Munc18-1 catalyzes step-wise zippering of three synaptic SNAREs (syntaxin, VAMP2, and SNAP-25) into a four-helix bundle. Catalysis requires formation of an intermediate template complex in which Munc18-1 juxtaposes the N-terminal regions of the SNARE motifs of syntaxin and VAMP2, while keeping their C-terminal regions separated. Next, SNAP-25 binds the templated SNAREs to form a partially-zippered SNARE complex. Finally, full zippering displaces Munc18-1. Munc18-1 mutations modulate the stability of the template complex in a manner consistent with their effects on membrane fusion, indicating that chaperoned SNARE assembly is essential for exocytosis. Two other SM proteins, Munc18-3 and Vps33, similarly chaperone SNARE assembly via a template complex, suggesting that SM protein mechanism is conserved.


2005 ◽  
Vol 280 (16) ◽  
pp. 15595-15600 ◽  
Author(s):  
Yinghui Zhang ◽  
Zengliu Su ◽  
Fan Zhang ◽  
Yong Chen ◽  
Yeon-Kyun Shin

The SNARE complex acts centrally for intracellular membrane fusion, an essential process for vesicular transport in cells. Association between vesicle-associated (v-) SNARE and target membrane (t-) SNARE results in the coiled coil core that bridges two membranes. Here, the structure of the SNARE complex assembled by recombinant t-SNARE Sso1p/Sec9 and v-SNARE Snc2p, which are involved in post-Golgi trafficking in yeast, was investigated using EPR. In detergent solutions, SNAREs formed a fully assembled core. However, when t-SNAREs were reconstituted into the proteoliposome and mixed with the soluble SNARE motif of Snc2p, a partially zipped core in which the N-terminal region is structured, whereas the C-terminal region is frayed, was detected. The partially zipped and fully assembled complexes coexisted with little free energy difference between them. Thus, the core complex formation of yeast SNAREs might not serve as the energy source for the fusion, which is different from what has been known for neuronal SNAREs. On the other hand, the results from the proteoliposome fusion assay, employing cysteine- and nitroxide-scanning mutants of Sso1p, suggested that the formation of the complete core is required for membrane fusion. This implies that core SNARE assembly plays an essential role in setting up the proper geometry of the lipid-protein complex for the successful fusion.


2010 ◽  
Vol 38 (1) ◽  
pp. 209-212 ◽  
Author(s):  
Chris MacDonald ◽  
Mary Munson ◽  
Nia J. Bryant

Regulation and specificity of membrane trafficking are required to maintain organelle integrity while performing essential cellular transport. Membrane fusion events in all eukaryotic cells are facilitated by the formation of specific SNARE (soluble N-ethylmaleimide-sensitive fusion proteinattachment protein receptor) complexes between proteins on opposing lipid bilayers. Although regulation of SNARE complex assembly is not well understood, it is clear that two conserved protein families, the Sx (syntaxin) and the SM (Sec1p/Munc18) proteins, are central to this process. Sxs are a subfamily of SNARE proteins; in addition to the coiled-coil SNARE motif, Sxs possess an N-terminal, autonomously folded, triple-helical (Habc) domain. For some Sxs, it has been demonstrated that this Habc domain exerts an autoinhibitory effect on SNARE complex assembly by making intramolecular contacts with the SNARE motif. SM proteins regulate membrane fusion through interactions with their cognate Sxs. One hypothesis for SM protein function is that they facilitate a switch of the Sx from a closed to an open conformation, thus lifting the inhibitory action of the Habc domain and freeing the SNARE motif to participate in SNARE complexes. However, whether these regulatory mechanisms are conserved throughout the Sx/SM protein families remains contentious as it is not clear whether the closed conformation represents a universal feature of Sxs.


2019 ◽  
Vol 116 (47) ◽  
pp. 23573-23581
Author(s):  
Youngsoo Jun ◽  
William Wickner

Membrane fusion at each organelle requires conserved proteins: Rab-GTPases, effector tethering complexes, Sec1/Munc18 (SM)-family SNARE chaperones, SNAREs of the R, Qa, Qb, and Qc families, and the Sec17/α-SNAP and ATP-dependent Sec18/NSF SNARE chaperone system. The basis of organelle-specific fusion, which is essential for accurate protein compartmentation, has been elusive. Rab family GTPases, SM proteins, and R- and Q-SNAREs may contribute to this specificity. We now report that the fusion supported by SNAREs alone is both inefficient and promiscuous with respect to organelle identity and to stimulation by SM family proteins or complexes. SNARE-only fusion is abolished by the disassembly chaperones Sec17 and Sec18. Efficient fusion in the presence of Sec17 and Sec18 requires a tripartite match between the organellar identities of the R-SNARE, the Q-SNAREs, and the SM protein or complex. The functions of Sec17 and Sec18 are not simply negative regulation; they stimulate fusion with either vacuolar SNAREs and their SM protein complex HOPS or endoplasmic reticulum/cis-Golgi SNAREs and their SM protein Sly1. The fusion complex of each organelle is assembled from its own functionally matching pieces to engage Sec17/Sec18 for fusion stimulation rather than inhibition.


2009 ◽  
Vol 418 (1) ◽  
pp. 73-80 ◽  
Author(s):  
James R. Johnson ◽  
Pawel Ferdek ◽  
Lu-Yun Lian ◽  
Jeff W. Barclay ◽  
Robert D. Burgoyne ◽  
...  

SNAREs (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptors) are widely accepted to drive all intracellular membrane fusion events. SM (Sec1/Munc18-like) proteins bind to SNAREs and this interaction may underlie their ubiquitous requirement for efficient membrane fusion. SM proteins bind to SNAREs in at least three modes: (i) to a closed conformation of syntaxin; (ii) to the syntaxin N-terminus; and (iii) to the assembled SNARE complex. Munc18-1 exhibits all three binding modes and recent in vitro reconstitution assays suggest that its interaction with the syntaxin N-terminus is essential for neuronal SNARE complex binding and efficient membrane fusion. To investigate the physiological relevance of these binding modes, we studied the UNC-18/UNC-64 SM/SNARE pair, which is essential for neuronal exocytosis in Caenorhabditis elegans. Mutations in the N-terminus of UNC-64 strongly inhibited binding to UNC-18, as did mutations targeting closed conformation binding. Complementary mutations in UNC-18 designed to selectively impair binding to either closed syntaxin or its N-terminus produced a similarly strong inhibition of UNC-64 binding. Therefore high-affinity UNC18/UNC-64 interaction in vitro involves both binding modes. To determine the physiological relevance of each mode, unc-18-null mutant worms were transformed with wild-type or mutant unc-18 constructs. The UNC-18(R39C) construct, that is defective in closed syntaxin binding, fully rescued the locomotion defects of the unc-18 mutant. In contrast, the UNC-18(F113R) construct, that is defective in binding to the N-terminus of UNC-64, provided no rescue. These results suggest that binding of UNC-18 to closed syntaxin is dispensable for membrane fusion, whereas interaction with the syntaxin N-terminus is essential for neuronal exocytosis in vivo.


2005 ◽  
Vol 16 (9) ◽  
pp. 3951-3962 ◽  
Author(s):  
Yujie Li ◽  
Dieter Gallwitz ◽  
Renwang Peng

Sec1p/Munc18 (SM) proteins are essential for membrane fusion events in eukaryotic cells. Here we describe a systematic, structure-based mutational analysis of the yeast SM protein Sly1p, which was previously shown to function in anterograde endoplasmic reticulum (ER)-to-Golgi and intra-Golgi protein transport. Five new temperature-sensitive (ts) mutants, each carrying a single amino acid substitution in Sly1p, were identified. Unexpectedly, not all of the ts mutants exhibited striking anterograde ER-to-Golgi transport defects. For example, in cells of the novel sly1-5 mutant, transport of newly synthesized lysosomal and secreted proteins was still efficient, but the ER-resident Kar2p/BiP was missorted to the outside of the cell, and two proteins, Sed5p and Rer1p, which normally shuttle between the Golgi and the ER, failed to relocate to the ER. We also discovered that in vivo, Sly1p was associated with a SNARE complex formed on the ER, and that in vitro, the SM protein directly interacted with the ER-localized nonsyntaxin SNAREs Use1p/Slt1p and Sec20p. Furthermore, several conditional mutants defective in Golgi-to-ER transport were synthetically lethal with sly1-5. Together, these results indicate a previously unrecognized function of Sly1p in retrograde transport to the endoplasmic reticulum.


2017 ◽  
Vol 114 (11) ◽  
pp. E2176-E2185 ◽  
Author(s):  
Waldo A. Spessott ◽  
Maria L. Sanmillan ◽  
Margaret E. McCormick ◽  
Vineet V. Kulkarni ◽  
Claudio G. Giraudo

The atypical lipid-anchored Syntaxin 11 (STX11) and its binding partner, the Sec/Munc (SM) protein Munc18-2, facilitate cytolytic granule release by cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. Patients carrying mutations in these genes develop familial hemophagocytic lymphohistiocytosis, a primary immunodeficiency characterized by impaired lytic granule exocytosis. However, whether a SNARE such as STX11, which lacks a transmembrane domain, can support membrane fusion in vivo is uncertain, as is the precise role of Munc18-2 during lytic granule exocytosis. Here, using a reconstituted “flipped” cell–cell fusion assay, we show that lipid-anchored STX11 and its cognate SNARE proteins mainly support exchange of lipids but not cytoplasmic content between cells, resembling hemifusion. Strikingly, complete fusion is stimulated by addition of wild-type Munc18-2 to the assay, but not of Munc18-2 mutants with abnormal STX11 binding. Our data reveal that Munc18-2 is not just a chaperone of STX11 but also directly contributes to complete membrane merging by promoting SNARE complex assembly. These results further support the concept that SM proteins in general are part of the core fusion machinery. This fusion mechanism likely contributes to other cell-type–specific exocytic processes such as platelet secretion.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Junyi Jiao ◽  
Mengze He ◽  
Sarah A Port ◽  
Richard W Baker ◽  
Yonggang Xu ◽  
...  

Sec1/Munc18-family (SM) proteins are required for SNARE-mediated membrane fusion, but their mechanism(s) of action remain controversial. Using single-molecule force spectroscopy, we found that the SM protein Munc18-1 catalyzes step-wise zippering of three synaptic SNAREs (syntaxin, VAMP2, and SNAP-25) into a four-helix bundle. Catalysis requires formation of an intermediate template complex in which Munc18-1 juxtaposes the N-terminal regions of the SNARE motifs of syntaxin and VAMP2, while keeping their C-terminal regions separated. SNAP-25 binds the templated SNAREs to induce full SNARE zippering. Munc18-1 mutations modulate the stability of the template complex in a manner consistent with their effects on membrane fusion, indicating that chaperoned SNARE assembly is essential for exocytosis. Two other SM proteins, Munc18-3 and Vps33, similarly chaperone SNARE assembly via a template complex, suggesting that SM protein mechanism is conserved.


Sign in / Sign up

Export Citation Format

Share Document