scholarly journals A Partially Zipped SNARE Complex Stabilized by the Membrane

2005 ◽  
Vol 280 (16) ◽  
pp. 15595-15600 ◽  
Author(s):  
Yinghui Zhang ◽  
Zengliu Su ◽  
Fan Zhang ◽  
Yong Chen ◽  
Yeon-Kyun Shin

The SNARE complex acts centrally for intracellular membrane fusion, an essential process for vesicular transport in cells. Association between vesicle-associated (v-) SNARE and target membrane (t-) SNARE results in the coiled coil core that bridges two membranes. Here, the structure of the SNARE complex assembled by recombinant t-SNARE Sso1p/Sec9 and v-SNARE Snc2p, which are involved in post-Golgi trafficking in yeast, was investigated using EPR. In detergent solutions, SNAREs formed a fully assembled core. However, when t-SNAREs were reconstituted into the proteoliposome and mixed with the soluble SNARE motif of Snc2p, a partially zipped core in which the N-terminal region is structured, whereas the C-terminal region is frayed, was detected. The partially zipped and fully assembled complexes coexisted with little free energy difference between them. Thus, the core complex formation of yeast SNAREs might not serve as the energy source for the fusion, which is different from what has been known for neuronal SNAREs. On the other hand, the results from the proteoliposome fusion assay, employing cysteine- and nitroxide-scanning mutants of Sso1p, suggested that the formation of the complete core is required for membrane fusion. This implies that core SNARE assembly plays an essential role in setting up the proper geometry of the lipid-protein complex for the successful fusion.

2010 ◽  
Vol 190 (1) ◽  
pp. 55-63 ◽  
Author(s):  
Jingshi Shen ◽  
Shailendra S. Rathore ◽  
Lavan Khandan ◽  
James E. Rothman

Sec1/Munc18 (SM) proteins activate intracellular membrane fusion through binding to cognate SNAP receptor (SNARE) complexes. The synaptic target membrane SNARE syntaxin 1 contains a highly conserved Habc domain, which connects an N-peptide motif to the SNARE core domain and is thought to participate in the binding of Munc18-1 (the neuronal SM protein) to the SNARE complex. Unexpectedly, we found that mutation or complete removal of the Habc domain had no effect on Munc18-1 stimulation of fusion. The central cavity region of Munc18-1 is required to stimulate fusion but not through its binding to the syntaxin Habc domain. SNAP-25, another synaptic SNARE subunit, contains a flexible linker and exhibits an atypical conjoined Qbc configuration. We found that neither the linker nor the Qbc configuration is necessary for Munc18-1 promotion of fusion. As a result, Munc18-1 activates a SNARE complex with the typical configuration, in which each of the SNARE core domains is individually rooted in the membrane bilayer. Thus, the SNARE four-helix bundle and syntaxin N-peptide constitute a minimal complement for Munc18-1 activation of fusion.


2008 ◽  
Vol 19 (3) ◽  
pp. 776-784 ◽  
Author(s):  
Marcin Barszczewski ◽  
John J. Chua ◽  
Alexander Stein ◽  
Ulrike Winter ◽  
Rainer Heintzmann ◽  
...  

Regulated exocytosis in neurons and neuroendocrine cells requires the formation of a stable soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex consisting of synaptobrevin-2/vesicle-associated membrane protein 2, synaptosome-associated protein of 25 kDa (SNAP-25), and syntaxin 1. This complex is subsequently disassembled by the concerted action of α-SNAP and the ATPases associated with different cellular activities-ATPase N-ethylmaleimide-sensitive factor (NSF). We report that NSF inhibition causes accumulation of α-SNAP in clusters on plasma membranes. Clustering is mediated by the binding of α-SNAP to uncomplexed syntaxin, because cleavage of syntaxin with botulinum neurotoxin C1 or competition by using antibodies against syntaxin SNARE motif abolishes clustering. Binding of α-SNAP potently inhibits Ca2+-dependent exocytosis of secretory granules and SNARE-mediated liposome fusion. Membrane clustering and inhibition of both exocytosis and liposome fusion are counteracted by NSF but not when an α-SNAP mutant defective in NSF activation is used. We conclude that α-SNAP inhibits exocytosis by binding to the syntaxin SNARE motif and in turn prevents SNARE assembly, revealing an unexpected site of action for α-SNAP in the SNARE cycle that drives exocytotic membrane fusion.


2000 ◽  
Vol 150 (1) ◽  
pp. 105-118 ◽  
Author(s):  
James A. McNew ◽  
Thomas Weber ◽  
Francesco Parlati ◽  
Robert J. Johnston ◽  
Thomas J. Melia ◽  
...  

Is membrane fusion an essentially passive or an active process? It could be that fusion proteins simply need to pin two bilayers together long enough, and the bilayers could do the rest spontaneously. Or, it could be that the fusion proteins play an active role after pinning two bilayers, exerting force in the bilayer in one or another way to direct the fusion process. To distinguish these alternatives, we replaced one or both of the peptidic membrane anchors of exocytic vesicle (v)- and target membrane (t)-SNAREs (soluble N-ethylmaleimide-sensitive fusion protein [NSF] attachment protein [SNAP] receptor) with covalently attached lipids. Replacing either anchor with a phospholipid prevented fusion of liposomes by the isolated SNAREs, but still allowed assembly of trans-SNARE complexes docking vesicles. This result implies an active mechanism; if fusion occurred passively, simply holding the bilayers together long enough would have been sufficient. Studies using polyisoprenoid anchors ranging from 15–55 carbons and multiple phospholipid-containing anchors reveal distinct requirements for anchors of v- and t-SNAREs to function: v-SNAREs require anchors capable of spanning both leaflets, whereas t-SNAREs do not, so long as the anchor is sufficiently hydrophobic. These data, together with previous results showing fusion is inhibited as the length of the linker connecting the helical bundle-containing rod of the SNARE complex to the anchors is increased (McNew, J.A., T. Weber, D.M. Engelman, T.H. Sollner, and J.E. Rothman, 1999. Mol. Cell. 4:415–421), suggests a model in which one activity of the SNARE complex promoting fusion is to exert force on the anchors by pulling on the linkers. This motion would lead to the simultaneous inward movement of lipids from both bilayers, and in the case of the v-SNARE, from both leaflets.


2011 ◽  
Vol 22 (14) ◽  
pp. 2612-2619 ◽  
Author(s):  
Shailendra S. Rathore ◽  
Nilanjan Ghosh ◽  
Yan Ouyang ◽  
Jingshi Shen

Soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs) form a four-helix coiled-coil bundle that juxtaposes two bilayers and drives a basal level of membrane fusion. The Sec1/Munc18 (SM) protein binds to its cognate SNARE bundle and accelerates the basal fusion reaction. The question of how the topological arrangement of the SNARE helices affects the reactivity of the fusion proteins remains unanswered. Here we address the problem for the first time in a reconstituted system containing both SNAREs and SM proteins. We find that to be fusogenic a SNARE topology must support both basal fusion and SM stimulation. Certain topological combinations of exocytic SNAREs result in basal fusion but cannot support SM stimulation, whereas other topologies support SM stimulation without inducing basal fusion. It is striking that of all the possible topological combinations of exocytic SNARE helices, only one induces efficient fusion. Our results suggest that the intracellular membrane fusion complex is designed to fuse bilayers according to one genetically programmed topology.


2002 ◽  
Vol 277 (27) ◽  
pp. 24294-24298 ◽  
Author(s):  
Fan Zhang ◽  
Yong Chen ◽  
Dae-Hyuk Kweon ◽  
Chang Sup Kim ◽  
Yeon-Kyun Shin

2005 ◽  
Vol 4 (12) ◽  
pp. 2017-2028 ◽  
Author(s):  
Jeffrey S. Van Komen ◽  
Xiaoyang Bai ◽  
Travis L. Rodkey ◽  
Johanna Schaub ◽  
James A. McNew

ABSTRACT Exocytosis in Saccharomyces cerevisiae requires the specific interaction between the plasma membrane t-SNARE complex (Sso1/2p;Sec9p)and a vesicular v-SNARE (Snc1/2p). While SNARE proteins drive membrane fusion, many aspects of SNARE assembly and regulation are ill defined. Plasma membrane syntaxin homologs (including Sso1p) contain a highly charged juxtamembrane region between the transmembrane helix and the“ SNARE domain” or core complex domain. We examined this region in vitro and in vivo by targeted sequence modification, including insertions and replacements. These modified Sso1 proteins were expressed as the sole copy of Sso in S. cerevisiae and examined for viability. We found that mutant Sso1 proteins with insertions or duplications show limited function, whereas replacement of as few as three amino acids preceding the transmembrane domain resulted in a nonfunctional SNARE in vivo. Viability is also maintained when two proline residues are inserted in the juxtamembrane of Sso1p, suggesting that helical continuity between the transmembrane domain and the core coiled-coil domain is not absolutely required. Analysis of these mutations in vitro utilizing a reconstituted fusion assay illustrates that the mutant Sso1 proteins are only moderately impaired in fusion. These results suggest that the sequence of the juxtamembrane region of Sso1p is vital for function in vivo, independent of the ability of these proteins to direct membrane fusion.


2001 ◽  
Vol 114 (24) ◽  
pp. 4397-4405
Author(s):  
Margaret E. Graham ◽  
Philip Washbourne ◽  
Michael C. Wilson ◽  
Robert D. Burgoyne

Considerable data support the idea that intracellular membrane fusion involves a conserved machinery containing the SNARE proteins. SNAREs assembled in vitro form a stable 4-helix bundle and it has been suggested that formation of this complex provides the driving force for bilayer fusion. We have tested this possibility in assays of exocytosis in cells expressing a botulinum neurotoxin E (BoNT/E)-resistant mutant of SNAP-25 in which additional disruptive mutations have been introduced. Single or double mutations of glutamine to glutamate or to arginine in the central zero layer residues of SNAP-25 did not impair the extent, time course or Ca2+-dependency of exocytosis in PC12 cells. Using adrenal chromaffin cells, we found that exocytosis could be reconstituted in cells transfected to express BoNT/E. A double Q→E mutation did not prevent reconstitution and the kinetics of single granule release events were indistinguishable from control cells. This shows a high level of tolerance of changes in the zero layer indicating that the conservation of these residues is not due to an essential requirement in vesicle docking or fusion and suggests that formation of a fully stable SNARE complex may not be required to drive membrane fusion.


2012 ◽  
Vol 198 (3) ◽  
pp. 323-330 ◽  
Author(s):  
Yao Wu ◽  
Yiwen Gu ◽  
Mary K. Morphew ◽  
Jun Yao ◽  
Felix L. Yeh ◽  
...  

Before exocytosis, vesicles must first become docked to the plasma membrane. The SNARE complex was originally hypothesized to mediate both the docking and fusion steps in the secretory pathway, but previous electron microscopy (EM) studies indicated that the vesicular SNARE protein synaptobrevin (syb) was dispensable for docking. In this paper, we studied the function of syb in the docking of large dense-core vesicles (LDCVs) in live PC12 cells using total internal reflection fluorescence microscopy. Cleavage of syb by a clostridial neurotoxin resulted in significant defects in vesicle docking in unfixed cells; these results were confirmed via EM using cells that were prepared using high-pressure freezing. The membrane-distal portion of its SNARE motif was critical for docking, whereas deletion of a membrane-proximal segment had little effect on docking but diminished fusion. Because docking was also inhibited by toxin-mediated cleavage of the target membrane SNAREs syntaxin and SNAP-25, syb might attach LDCVs to the plasma membrane through N-terminal assembly of trans-SNARE pairs.


Author(s):  
Yaru Hu ◽  
Le Zhu ◽  
Cong Ma

Formation of the trans-SNARE complex is believed to generate a force transfer to the membranes to promote membrane fusion, but the underlying mechanism remains elusive. In this study, we show that helix-breaking and/or length-increasing insertions in the juxtamembrane linker region of synaptobrevin-2 exert diverse effects on liposome fusion, in a manner dependent on the insertion position relative to the two conserved tryptophan residues (W89/W90). Helical extension of synaptobrevin-2 to W89/W90 is a prerequisite for initiating membrane merger. The transmembrane region of synaptobrevin-2 enables proper localization of W89/W90 at the membrane interface to gate force transfer. Besides, our data indicate that the SNARE regulatory components Munc18-1 and Munc13-1 impose liposome fusion strong demand on tight coupling between the SNARE motif and the transmembrane region of synaptobrevin-2.


2013 ◽  
Vol 24 (3) ◽  
pp. 331-341 ◽  
Author(s):  
Marion Weber-Boyvat ◽  
Hongxia Zhao ◽  
Nina Aro ◽  
Qiang Yuan ◽  
Konstantin Chernov ◽  
...  

Sec1/Munc18 family proteins are important components of soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complex–mediated membrane fusion processes. However, the molecular interactions and the mechanisms involved in Sec1p/Munc18 control and SNARE complex assembly are not well understood. We provide evidence that Mso1p, a Sec1p- and Sec4p-binding protein, interacts with membranes to regulate membrane fusion. We identify two membrane-binding sites on Mso1p. The N-terminal region inserts into the lipid bilayer and appears to interact with the plasma membrane, whereas the C-terminal region of the protein binds phospholipids mainly through electrostatic interactions and may associate with secretory vesicles. The Mso1p membrane interactions are essential for correct subcellular localization of Mso1p–Sec1p complexes and for membrane fusion in Saccharomyces cerevisiae. These characteristics are conserved in the phosphotyrosine-binding (PTB) domain of β-amyloid precursor protein–binding Mint1, the mammalian homologue of Mso1p. Both Mint1 PTB domain and Mso1p induce vesicle aggregation/clustering in vitro, supporting a role in a membrane-associated process. The results identify Mso1p as a novel lipid-interacting protein in the SNARE complex assembly machinery. Furthermore, our data suggest that a general mode of interaction, consisting of a lipid-binding protein, a Rab family GTPase, and a Sec1/Munc18 family protein, is important in all SNARE-mediated membrane fusion events.


Sign in / Sign up

Export Citation Format

Share Document