scholarly journals Revolving movement of a dynamic cluster of actin filaments during mitosis

2010 ◽  
Vol 191 (3) ◽  
pp. 453-462 ◽  
Author(s):  
Masaru Mitsushima ◽  
Kazuhiro Aoki ◽  
Miki Ebisuya ◽  
Shigeru Matsumura ◽  
Takuya Yamamoto ◽  
...  

The actin cytoskeleton undergoes rapid changes in its architecture during mitosis. Here, we demonstrate novel actin assembly dynamics in M phase. An amorphous cluster of actin filaments appears during prometaphase, revolves horizontally along the cell cortex at a constant angular speed, and fuses into the contractile ring after three to four revolutions. Cdk1 activity is required for the formation of this mitotic actin cluster and its revolving movement. Rapid turnover of actin in the filaments takes place everywhere in the cluster and is also required for its cluster rotation during mitosis. Knockdown of Arp3, a component of the actin filament–nucleating Arp2/3 complex, inhibits the formation of the mitotic actin cluster without affecting other actin structures. These results identify Arp2/3 complex as a key factor in the generation of the dynamic actin cluster during mitosis.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anan Chen ◽  
Luisa Ulloa Severino ◽  
Thomas C. Panagiotou ◽  
Trevor F. Moraes ◽  
Darren A. Yuen ◽  
...  

AbstractDuring cytokinesis, the actin cytoskeleton is partitioned into two spatially distinct actin isoform specific networks: a β-actin network that generates the equatorial contractile ring, and a γ-actin network that localizes to the cell cortex. Here we demonstrate that the opposing regulation of the β- and γ-actin networks is required for successful cytokinesis. While activation of the formin DIAPH3 at the cytokinetic furrow underlies β-actin filament production, we show that the γ-actin network is specifically depleted at the cell poles through the localized deactivation of the formin DIAPH1. During anaphase, CLIP170 is delivered by astral microtubules and displaces IQGAP1 from DIAPH1, leading to formin autoinhibition, a decrease in cortical stiffness and localized membrane blebbing. The contemporaneous production of a β-actin contractile ring at the cell equator and loss of γ-actin from the poles is required to generate a stable cytokinetic furrow and for the completion of cell division.


1990 ◽  
Vol 111 (5) ◽  
pp. 1905-1911 ◽  
Author(s):  
L G Cao ◽  
Y L Wang

The contractile ring in dividing animal cells is formed primarily through the reorganization of existing actin filaments (Cao, L.-G., and Y.-L. Wang. 1990. J. Cell Biol. 110:1089-1096), but it is not clear whether the process involves a random recruitment of diffusible actin filaments from the cytoplasm, or a directional movement of cortically associated filaments toward the equator. We have studied this question by observing the distribution of actin filaments that have been labeled with fluorescent phalloidin and microinjected into dividing normal rat kidney (NRK) cells. The labeled filaments are present primarily in the cytoplasm during prometaphase and early metaphase, but become associated extensively with the cell cortex 10-15 min before the onset of anaphase. This process is manifested both as an increase in cortical fluorescence intensity and as movements of discrete aggregates of actin filaments toward the cortex. The concentration of actin fluorescence in the equatorial region, accompanied by a decrease of fluorescence in polar regions, is detected 2-3 min after the onset of anaphase. By directly tracing the distribution of aggregates of labeled actin filaments, we are able to detect, during anaphase and telophase, movements of cortical actin filaments toward the equator at an average rate of 1.0 micron/min. Our results, combined with previous observations, suggest that the organization of actin filaments during cytokinesis probably involves an association of cytoplasmic filaments with the cortex, a movement of cortical filaments toward the cleavage furrow, and a dissociation of filaments from the equatorial cortex.


1993 ◽  
Vol 106 (1) ◽  
pp. 355-364
Author(s):  
S.L. Tamm ◽  
S. Tamm

We used rhodamine-phalloidin and ultrastructural methods to follow dynamic changes in adhesive cell junctions and associated actin filaments during reversible epithelial adhesion in the mouth of the ctenophore Beroe. A cruising Beroe keeps its mouth closed by interdigitated actin-coated appositions between paired strips of cells lining the lips. The mouth opens rapidly (in 0.2-0.3 s) by muscular action to engulf prey (other ctenophores), then re-seals after ingestion. We found that the interlocking surface architecture of the adhesive cells, including the actin-coated junctions, rapidly disappears after food-induced opening of the mouth. In contrast, forcible separation of the lips in the absence of food rips the junctions, still intact, from the surfaces of the cells. The prey-stimulated loss of adhesive cell junctions and associated actin cytoskeleton is one of the most rapid changes in actin-based junctions yet observed. This system provides unique experimental advantages for investigating the dynamic control of reversible cell adhesions and membrane-associated actin filaments.


2021 ◽  
Vol 10 (9) ◽  
pp. e54810918396
Author(s):  
Arthur Silva Rezende ◽  
Anna Cecília Dias Maciel Carneiro ◽  
Bruna Raphaela Oliveira Silva ◽  
Simone de Sales Costa Moreira Carboni ◽  
Virginia Oliveira Crema

One way of trying to control oral squamous cell carcinoma is to invest in new therapies focused on the molecular biology of receptors and their intracellular signaling pathways. This study aimed to evaluate the effect of LY2109761 (an inhibitor of TGF-β receptors) on cell migration in oral squamous cell carcinoma in vitro. Actin cytoskeleton of SCC-4 cells control and LY2109761 (1, 5 and 10 μM) treated on three-dimensional Matrigel were analysed by using confocal laser microscopy. Control and LY2109761 (1, 5 and 10 μM) treated cells that migrated through the membrane of three-dimensional cell migration assays were counted, significance was p<0.05. Control cells were seen with voluminous cytoplasm, cell cortex preserved and actin cytoskeleton well developed with well distributed actin filaments. Regardless of concentration, cells treated showed: rounded morphology and small size, scanty cytoplasm, cortical F-actin less clear that the control cells, and disruption of actin filaments. The migratory cells were inhibited by treatment with LY2109761 [F (3, 11) = 3742, p<0.0001], in a dose-dependent manner. These results suggest that LY2109761 exerts an inhibitory effect on the actin cytoskeleton and cell migration on SCC-4 cells, therefore, it is a promising therapeutic option for oral squamous cell carcinoma.


2008 ◽  
Vol 88 (2) ◽  
pp. 489-513 ◽  
Author(s):  
Christophe Le Clainche ◽  
Marie-France Carlier

To migrate, a cell first extends protrusions such as lamellipodia and filopodia, forms adhesions, and finally retracts its tail. The actin cytoskeleton plays a major role in this process. The first part of this review (sect. ii) describes the formation of the lamellipodial and filopodial actin networks. In lamellipodia, the WASP-Arp2/3 pathways generate a branched filament array. This polarized dendritic actin array is maintained in rapid treadmilling by the concerted action of ADF, profilin, and capping proteins. In filopodia, formins catalyze the processive assembly of nonbranched actin filaments. Cell matrix adhesions mechanically couple actin filaments to the substrate to convert the treadmilling into protrusion and the actomyosin contraction into traction of the cell body and retraction of the tail. The second part of this review (sect. iii) focuses on the function and the regulation of major proteins (vinculin, talin, tensin, and α-actinin) that control the nucleation, the binding, and the barbed-end growth of actin filaments in adhesions.


2009 ◽  
Vol 20 (8) ◽  
pp. 2160-2173 ◽  
Author(s):  
Colleen T. Skau ◽  
Erin M. Neidt ◽  
David R. Kovar

Like animal cells, fission yeast divides by assembling actin filaments into a contractile ring. In addition to formin Cdc12p and profilin, the single tropomyosin isoform SpTm is required for contractile ring assembly. Cdc12p nucleates actin filaments and remains processively associated with the elongating barbed end while driving the addition of profilin-actin. SpTm is thought to stabilize mature filaments, but it is not known how SpTm localizes to the contractile ring and whether SpTm plays a direct role in Cdc12p-mediated actin polymerization. Using “bulk” and single actin filament assays, we discovered that Cdc12p can recruit SpTm to actin filaments and that SpTm has diverse effects on Cdc12p-mediated actin assembly. On its own, SpTm inhibits actin filament elongation and depolymerization. However, Cdc12p completely overcomes the combined inhibition of actin nucleation and barbed end elongation by profilin and SpTm. Furthermore, SpTm increases the length of Cdc12p-nucleated actin filaments by enhancing the elongation rate twofold and by allowing them to anneal end to end. In contrast, SpTm ultimately turns off Cdc12p-mediated elongation by “trapping” Cdc12p within annealed filaments or by dissociating Cdc12p from the barbed end. Therefore, SpTm makes multiple contributions to contractile ring assembly during and after actin polymerization.


1997 ◽  
Vol 136 (3) ◽  
pp. 649-658 ◽  
Author(s):  
Rong Li

Yeast protein, Bee1, exhibits sequence homology to Wiskott-Aldrich syndrome protein (WASP), a human protein that may link signaling pathways to the actin cytoskeleton. Mutations in WASP are the primary cause of Wiskott-Aldrich syndrome, characterized by immuno-deficiencies and defects in blood cell morphogenesis. This report describes the characterization of Bee1 protein function in budding yeast. Disruption of BEE1 causes a striking change in the organization of actin filaments, resulting in defects in budding and cytokinesis. Rather than assemble into cortically associated patches, actin filaments in the buds of Δbee1 cells form aberrant bundles that do not contain most of the cortical cytoskeletal components. It is significant that Δbee1 is the only mutation reported so far that abolishes cortical actin patches in the bud. Bee1 protein is localized to actin patches and interacts with Sla1p, a Src homology 3 domain–containing protein previously implicated in actin assembly and function. Thus, Bee1 protein may be a crucial component of a cytoskeletal complex that controls the assembly and organization of actin filaments at the cell cortex.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Uri Manor ◽  
Sadie Bartholomew ◽  
Gonen Golani ◽  
Eric Christenson ◽  
Michael Kozlov ◽  
...  

Mitochondrial division, essential for survival in mammals, is enhanced by an inter-organellar process involving ER tubules encircling and constricting mitochondria. The force for constriction is thought to involve actin polymerization by the ER-anchored isoform of the formin protein inverted formin 2 (INF2). Unknown is the mechanism triggering INF2-mediated actin polymerization at ER-mitochondria intersections. We show that a novel isoform of the formin-binding, actin-nucleating protein Spire, Spire1C, localizes to mitochondria and directly links mitochondria to the actin cytoskeleton and the ER. Spire1C binds INF2 and promotes actin assembly on mitochondrial surfaces. Disrupting either Spire1C actin- or formin-binding activities reduces mitochondrial constriction and division. We propose Spire1C cooperates with INF2 to regulate actin assembly at ER-mitochondrial contacts. Simulations support this model's feasibility and demonstrate polymerizing actin filaments can induce mitochondrial constriction. Thus, Spire1C is optimally positioned to serve as a molecular hub that links mitochondria to actin and the ER for regulation of mitochondrial division.


1995 ◽  
Vol 128 (4) ◽  
pp. 599-615 ◽  
Author(s):  
R Li ◽  
Y Zheng ◽  
D G Drubin

We have established an in vitro assay for assembly of the cortical actin cytoskeleton of budding yeast cells. After permeabilization of yeast by a novel procedure designed to maintain the spatial organization of cellular constituents, exogenously added fluorescently labeled actin monomers assemble into distinct structures in a pattern that is similar to the cortical actin distribution in vivo. Actin assembly in the bud of small-budded cells requires a nucleation activity provided by protein factors that appear to be distinct from the barbed ends of endogenous actin filaments. This nucleation activity is lost in cells that lack either Sla1 or Sla2, proteins previously implicated in cortical actin cytoskeleton function, suggesting a possible role for these proteins in the nucleation reaction. The rate and the extent of actin assembly in the bud are increased in permeabilized delta cap2 cells, providing evidence that capping protein regulates the ability of the barbed ends of actin filaments to grow in yeast cells. Actin incorporation in the bud can be stimulated by treating the permeabilized cells with GTP-gamma S, and, significantly, the stimulatory effect is eliminated by a mutation in CDC42, a gene that encodes a Rho-like GTP-binding protein required for bud formation. Furthermore, the lack of actin nucleation activity in the cdc42 mutant can be complemented in vitro by a constitutively active Cdc42 protein. These results suggest that Cdc42 is closely involved in regulating actin assembly during polarized cell growth.


1994 ◽  
Vol 107 (7) ◽  
pp. 1853-1862 ◽  
Author(s):  
I. Mabuchi

Cleavage furrow formation at the first cell division of sea urchin and sand dollar eggs was investigated in detail by fluorescence staining of actin filaments with rhodamine-phalloidin of either whole eggs or isolated egg cortices. Cortical actin filaments were clustered at anaphase and then the clusters became fibrillar at the end of anaphase. The timing when the contractile ring actin filaments appear was precisely determined in the course of mitosis: accumulation of the contractile ring actin filaments at the equatorial cell cortex is first noticed at the beginning of telophase (shortly before furrow formation), when the chromosomal vesicles are fusing with each other. The accumulated actin filaments were not well organized at the early stage but were organized into parallel bundles as the furrowing progressed. The bundles were finally fused into a tightly packed filament belt. Wheat germ agglutinin (WGA)-binding sites were distributed on the surface of the egg in a manner similar to the actin filaments after anaphase. The WGA-binding sites became accumulated in the contractile ring together with the contractile ring actin filaments, indicating an intimate relationship between these sites and actin filament-anchoring sites on the plasma membrane. Myosin also appeared in the contractile ring together with the actin filaments. The ‘cleavage stimulus’, a signal hypothesized by Rappaport (reviewed by R. Rappaport (1986) Int. Rev. Cytol. 105, 245–281) was suggested to induce aggregation or bundling of the actin filaments in the cortical layer.


Sign in / Sign up

Export Citation Format

Share Document