scholarly journals α-Actinin-4/FSGS1 is required for Arp2/3-dependent actin assembly at the adherens junction

2012 ◽  
Vol 196 (1) ◽  
pp. 115-130 ◽  
Author(s):  
Vivian W. Tang ◽  
William M. Brieher

We have developed an in vitro assay to study actin assembly at cadherin-enriched cell junctions. Using this assay, we demonstrate that cadherin-enriched junctions can polymerize new actin filaments but cannot capture preexisting filaments, suggesting a mechanism involving de novo synthesis. In agreement with this hypothesis, inhibition of Arp2/3-dependent nucleation abolished actin assembly at cell–cell junctions. Reconstitution biochemistry using the in vitro actin assembly assay identified α-actinin-4/focal segmental glomerulosclerosis 1 (FSGS1) as an essential factor. α-Actinin-4 specifically localized to sites of actin incorporation on purified membranes and at apical junctions in Madin–Darby canine kidney cells. Knockdown of α-actinin-4 decreased total junctional actin and inhibited actin assembly at the apical junction. Furthermore, a point mutation of α-actinin-4 (K255E) associated with FSGS failed to support actin assembly and acted as a dominant negative to disrupt actin dynamics at junctional complexes. These findings demonstrate that α-actinin-4 plays an important role in coupling actin nucleation to assembly at cadherin-based cell–cell adhesive contacts.

2013 ◽  
Vol 203 (5) ◽  
pp. 815-833 ◽  
Author(s):  
Vivian W. Tang ◽  
William M. Brieher

By combining in vitro reconstitution biochemistry with a cross-linking approach, we have identified focal segmental glomerulosclerosis 3/CD2-associated protein (FSGS3/CD2AP) as a novel actin barbed-end capping protein responsible for actin stability at the adherens junction. FSGS3/CD2AP colocalizes with E-cadherin and α-actinin-4 at the apical junction in polarized Madin-Darby canine kidney (MDCK) cells. Knockdown of FSGS3/CD2AP compromised actin stability and decreased actin accumulation at the adherens junction. Using a novel apparatus to apply mechanical stress to cell–cell junctions, we showed that knockdown of FSGS3/CD2AP compromised adhesive strength, resulting in tearing between cells and disruption of barrier function. Our results reveal a novel function of FSGS3/CD2AP and a previously unrecognized role of barbed-end capping in junctional actin dynamics. Our study underscores the complexity of actin regulation at cell–cell contacts that involves actin activators, inhibitors, and stabilizers to control adhesive strength, epithelial behavior, and permeability barrier integrity.


2003 ◽  
Vol 14 (6) ◽  
pp. 2520-2529 ◽  
Author(s):  
Carol Wadham ◽  
Jennifer R Gamble ◽  
Mathew A Vadas ◽  
Yeesim Khew-Goodall

Cell-cell adhesion regulates processes important in embryonal development, normal physiology, and cancer progression. It is regulated by various mechanisms including tyrosine phosphorylation. We have previously shown that the protein tyrosine phosphatase Pez is concentrated at intercellular junctions in confluent, quiescent monolayers but is nuclear in cells lacking cell-cell contacts. We show here with an epithelial cell model that Pez localizes to the adherens junctions in confluent monolayers. A truncation mutant lacking the catalytic domain acts as a dominant negative mutant to upregulate tyrosine phosphorylation at adherens junctions. We identified β-catenin, a component of adherens junctions, as a substrate of Pez by a “substrate trapping” approach and by in vitro dephosphorylation with recombinant Pez. Consistent with this, ectopic expression of the dominant negative mutant caused an increase in tyrosine phosphorylation of β-catenin, demonstrating that Pez regulates the level of tyrosine phosphorylation of adherens junction proteins, including β-catenin. Increased tyrosine phosphorylation of adherens junction proteins has been shown to decrease cell-cell adhesion, promoting cell migration as a result. Accordingly, the dominant negative Pez mutant enhanced cell motility in an in vitro “wound” assay. This suggests that Pez is also a regulator of cell motility, most likely through its action on cell-cell adhesion.


2015 ◽  
Vol 209 (3) ◽  
pp. 367-376 ◽  
Author(s):  
Katharina Grikscheit ◽  
Tanja Frank ◽  
Ying Wang ◽  
Robert Grosse

Epithelial integrity is vitally important, and its deregulation causes early stage cancer. De novo formation of an adherens junction (AJ) between single epithelial cells requires coordinated, spatial actin dynamics, but the mechanisms steering nascent actin polymerization for cell–cell adhesion initiation are not well understood. Here we investigated real-time actin assembly during daughter cell–cell adhesion formation in human breast epithelial cells in 3D environments. We identify formin-like 2 (FMNL2) as being specifically required for actin assembly and turnover at newly formed cell–cell contacts as well as for human epithelial lumen formation. FMNL2 associates with components of the AJ complex involving Rac1 activity and the FMNL2 C terminus. Optogenetic control of Rac1 in living cells rapidly drove FMNL2 to epithelial cell–cell contact zones. Furthermore, Rac1-induced actin assembly and subsequent AJ formation critically depends on FMNL2. These data uncover FMNL2 as a driver for human epithelial AJ formation downstream of Rac1.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 135
Author(s):  
Pau Urdeitx ◽  
Mohamed H. Doweidar

Mechanical and electrical stimuli play a key role in tissue formation, guiding cell processes such as cell migration, differentiation, maturation, and apoptosis. Monitoring and controlling these stimuli on in vitro experiments is not straightforward due to the coupling of these different stimuli. In addition, active and reciprocal cell–cell and cell–extracellular matrix interactions are essential to be considered during formation of complex tissue such as myocardial tissue. In this sense, computational models can offer new perspectives and key information on the cell microenvironment. Thus, we present a new computational 3D model, based on the Finite Element Method, where a complex extracellular matrix with piezoelectric properties interacts with cardiac muscle cells during the first steps of tissue formation. This model includes collective behavior and cell processes such as cell migration, maturation, differentiation, proliferation, and apoptosis. The model has employed to study the initial stages of in vitro cardiac aggregate formation, considering cell–cell junctions, under different extracellular matrix configurations. Three different cases have been purposed to evaluate cell behavior in fibered, mechanically stimulated fibered, and mechanically stimulated piezoelectric fibered extra-cellular matrix. In this last case, the cells are guided by the coupling of mechanical and electrical stimuli. Accordingly, the obtained results show the formation of more elongated groups and enhancement in cell proliferation.


2002 ◽  
Vol 283 (3) ◽  
pp. C850-C865 ◽  
Author(s):  
Caterina Di Ciano ◽  
Zilin Nie ◽  
Katalin Szászi ◽  
Alison Lewis ◽  
Takehito Uruno ◽  
...  

Osmotic stress is known to affect the cytoskeleton; however, this adaptive response has remained poorly characterized, and the underlying signaling pathways are unexplored. Here we show that hypertonicity induces submembranous de novo F-actin assembly concomitant with the peripheral translocation and colocalization of cortactin and the actin-related protein 2/3 (Arp2/3) complex, which are key components of the actin nucleation machinery. Additionally, hyperosmolarity promotes the association of cortactin with Arp2/3 as revealed by coimmunoprecipitation. Using various truncation or phosphorylation-incompetent mutants, we show that cortactin translocation requires the Arp2/3- or the F-actin binding domain, but the process is independent of the shrinkage-induced tyrosine phosphorylation of cortactin. Looking for an alternative signaling mechanism, we found that hypertonicity stimulates Rac and Cdc42. This appears to be a key event in the osmotically triggered cytoskeletal reorganization, because 1) constitutively active small GTPases translocate cortactin, 2) Rac and cortactin colocalize at the periphery of hypertonically challenged cells, and 3) dominant-negative Rac and Cdc42 inhibit the hypertonicity-provoked cortactin and Arp3 translocation. The Rho family-dependent cytoskeleton remodeling may be an important osmoprotective response that reinforces the cell cortex.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Keerat Kaur ◽  
Asharee Mahmoud ◽  
Hanna Girard ◽  
Ann Anu Kurian ◽  
Magdalena Zak ◽  
...  

Introduction: Despite various clinical modalities, ischemic heart disease remains among the leading causes of mortality and morbidity worldwide. The elemental problem is the immense loss of cardiomyocytes (CMs) post-myocardial infarction (MI). Reprogramming non- cardiomyocytes (non-CMs) into cardiomyocyte (CM)-like cells in vivo is a promising strategy for cardiac regeneration: however, the traditional viral delivery method hampered its application into clinical settings due to low and erratic transduction efficiency. Methods: We used a modified mRNA (modRNA) gene delivery platform to deliver different stoichiometry of cardiac-reprogramming genes (Gata4, Mef2c, Tbx5 and Hand2) together with reprogramming helper genes (Dominant Negative (DN)-TGFβ, DN- Wnt8a and Acid ceramidase (AC)), named 7G, to induce direct cardiac reprogramming post myocardial infarction (MI). Results: Here, we identified 7G modRNA cocktail as an important regulator ofthe cardiac reprogramming. Cardiac transfection with 7G modRNA doubled cardiac reprogramming efficiency (57%) in comparison to Gata4, Mef2C and Tbx5 (GMT) alone (28%) in vitro . By inducing MI in our lineage tracing model, we showed that one-time delivery of the 7G-modRNA cocktail reprogrammed ~25% of the non-CMs in the scar area to CM- like cells. Furthermore, 7G modRNA treated mice showed significantly improved cardiac function, longer survival, reduced scar size and greater capillary density than control mice 28 days post-MI. We attributed the improvement in heart function post modRNA delivery of 7G or 7G with increased Hand2 ratio (7G-GMT Hx2) to significant upregulation of 15 key angiogenic factors without any signs of angioma or edema. Conclusions: 7G or 7G GMT HX2 modRNA cocktails boosts de novo CM-like cells and promotes cardiovascular regeneration post-MI. Thus, we highlight that this gene delivery approach not only has high efficiency but also high margin of safety for translation to clinics.


1997 ◽  
Vol 110 (17) ◽  
pp. 2065-2077 ◽  
Author(s):  
M.G. Lampugnani ◽  
M. Corada ◽  
P. Andriopoulou ◽  
S. Esser ◽  
W. Risau ◽  
...  

In src- and ras-transformed cells, tyrosine phosphorylation of adherens junction (AJ) components is related to impairment of cell-cell adhesion. In this paper we report that in human endothelial cells (EC), tyrosine phosphorylation of AJ can be a physiological process regulated by cell density. Immunofluorescence analysis revealed that a phosphotyrosine (P-tyr) antibody could stain cell-cell junctions only in sparse or loosely confluent EC, while the staining was markedly reduced in tightly confluent cultures. This process was reversible, since on artificial wounding of EC monolayers, the cells at the migrating front reacquired P-tyr labelling at cell contacts. In EC, the major cadherin at intercellular AJ is the cell-type-specific VE-cadherin. We therefore analyzed whether this molecule was at least in part responsible for the changes in P-tyr content at cell junctions. Tyrosine phosphorylation of VE-cadherin, beta-catenin and p120, occurred in looser AJ, i.e. in recently confluent cells, and was notably reduced in tightly confluent cultures. Changes in P-tyr content paralleled changes in the molecular organization of AJ. VE-cadherin was mostly associated with beta-catenin and p120 in loose EC monolayers, while in long-confluent cells, these two catenins were largely replaced by plakoglobin. Inhibition of P-tyr phosphatases (PTPases) by PV markedly augmented the P-tyr content of VE-cadherin, which bound p120 and beta-catenin more efficiently, but not plakoglobin. Transfection experiments in CHO cells showed that p120 could bind to a VE-cadherin cytoplasmic region different from that responsible for beta-catenin binding, and PV stabilized this association. Overall these data indicate that endothelial AJ are dynamic structures that can be affected by the state of confluence of the cells. Tyrosine phosphorylation of VE-cadherin and its association to p120 and beta-catenin characterizes early cell contacts, while the formation of mature and cytoskeleton-connected junctions is accompanied by dephosphorylation and plakoglobin association.


2011 ◽  
Vol 22 (14) ◽  
pp. 2509-2519 ◽  
Author(s):  
Jian J. Liu ◽  
Rebecca A. Stockton ◽  
Alexandre R. Gingras ◽  
Ararat J. Ablooglu ◽  
Jaewon Han ◽  
...  

Activation of Rap1 small GTPases stabilizes cell–cell junctions, and this activity requires Krev Interaction Trapped gene 1 (KRIT1). Loss of KRIT1 disrupts cardiovascular development and causes autosomal dominant familial cerebral cavernous malformations. Here we report that native KRIT1 protein binds the effector loop of Rap1A but not H-Ras in a GTP-dependent manner, establishing that it is an authentic Rap1-specific effector. By modeling the KRIT1–Rap1 interface we designed a well-folded KRIT1 mutant that exhibited a ∼40-fold-reduced affinity for Rap1A and maintained other KRIT1-binding functions. Direct binding of KRIT1 to Rap1 stabilized endothelial cell–cell junctions in vitro and was required for cardiovascular development in vivo. Mechanistically, Rap1 binding released KRIT1 from microtubules, enabling it to locate to cell–cell junctions, where it suppressed Rho kinase signaling and stabilized the junctions. These studies establish that the direct physical interaction of Rap1 with KRIT1 enables the translocation of microtubule-sequestered KRIT1 to junctions, thereby supporting junctional integrity and cardiovascular development.


2003 ◽  
Vol 14 (10) ◽  
pp. 4155-4161 ◽  
Author(s):  
Kathleen N. Riley ◽  
Angel E. Maldonado ◽  
Patrice Tellier ◽  
Crislyn D'Souza-Schorey ◽  
Ira M. Herman

To understand the role that ARF6 plays in regulating isoactin dynamics and cell motility, we transfected endothelial cells (EC) with HA-tagged ARF6: the wild-type form (WT), a constitutively-active form unable to hydrolyze GTP (Q67L), and two dominant-negative forms, which are either unable to release GDP (T27N) or fail to bind nucleotide (N122I). Motility was assessed by digital imaging microscopy before Western blot analysis, coimmunoprecipitation, or colocalization studies using ARF6, β-actin, or β-actin-binding protein-specific antibodies. EC expressing ARF6-Q67L spread and close in vitro wounds at twice the control rates. EC expressing dominant-negative ARF6 fail to develop a leading edge, are unable to ruffle their membranes (N122I), and possess arborized processes. Colocalization studies reveal that the Q67L and WT ARF6-HA are enriched at the leading edge with β-actin; but T27N and N122I ARF6-HA are localized on endosomes together with the β-actin capping protein, βcap73. Coimmunoprecipitation and Western blot analyses reveal the direct association of ARF6-HA with βcap73, defining a role for ARF6 in signaling cytoskeletal remodeling during motility. Knowledge of the role that ARF6 plays in orchestrating membrane and β-actin dynamics will help to reveal molecular mechanisms regulating actin-based motility during development and disease.


2010 ◽  
Vol 207 (11) ◽  
pp. 2331-2341 ◽  
Author(s):  
John R. Grainger ◽  
Katie A. Smith ◽  
James P. Hewitson ◽  
Henry J. McSorley ◽  
Yvonne Harcus ◽  
...  

Foxp3-expressing regulatory T (T reg) cells have been implicated in parasite-driven inhibition of host immunity during chronic infection. We addressed whether parasites can directly induce T reg cells. Foxp3 expression was stimulated in naive Foxp3− T cells in mice infected with the intestinal helminth Heligmosomoides polygyrus. In vitro, parasite-secreted proteins (termed H. polygyrus excretory-secretory antigen [HES]) induced de novo Foxp3 expression in fluorescence-sorted Foxp3− splenocytes from Foxp3–green fluorescent protein reporter mice. HES-induced T reg cells suppressed both in vitro effector cell proliferation and in vivo allergic airway inflammation. HES ligated the transforming growth factor (TGF) β receptor and promoted Smad2/3 phosphorylation. Foxp3 induction by HES was lost in dominant-negative TGF-βRII cells and was abolished by the TGF-β signaling inhibitor SB431542. This inhibitor also reduced worm burdens in H. polygyrus–infected mice. HES induced IL-17 in the presence of IL-6 but did not promote Th1 or Th2 development under any conditions. Importantly, antibody to mammalian TGF-β did not recognize HES, whereas antisera that inhibited HES did not affect TGF-β. Foxp3 was also induced by secreted products of Teladorsagia circumcincta, a related nematode which is widespread in ruminant animals. We have therefore identified a novel pathway through which helminth parasites may stimulate T reg cells, which is likely to be a key part of the parasite’s immunological relationship with the host.


Sign in / Sign up

Export Citation Format

Share Document