scholarly journals Distinct roles of Rho1, Cdc42, and Cyk3 in septum formation and abscission during yeast cytokinesis

2013 ◽  
Vol 202 (2) ◽  
pp. 311-329 ◽  
Author(s):  
Masayuki Onishi ◽  
Nolan Ko ◽  
Ryuichi Nishihama ◽  
John R. Pringle

In yeast and animal cytokinesis, the small guanosine triphosphatase (GTPase) Rho1/RhoA has an established role in formation of the contractile actomyosin ring, but its role, if any, during cleavage-furrow ingression and abscission is poorly understood. Through genetic screens in yeast, we found that either activation of Rho1 or inactivation of another small GTPase, Cdc42, promoted secondary septum (SS) formation, which appeared to be responsible for abscission. Consistent with this hypothesis, a dominant-negative Rho1 inhibited SS formation but not cleavage-furrow ingression or the concomitant actomyosin ring constriction. Moreover, Rho1 is temporarily inactivated during cleavage-furrow ingression; this inactivation requires the protein Cyk3, which binds Rho1-guanosine diphosphate via its catalytically inactive transglutaminase-like domain. Thus, unlike the active transglutaminases that activate RhoA, the multidomain protein Cyk3 appears to inhibit activation of Rho1 (and thus SS formation), while simultaneously promoting cleavage-furrow ingression through primary septum formation. This work suggests a general role for the catalytically inactive transglutaminases of fungi and animals, some of which have previously been implicated in cytokinesis.

2003 ◽  
Vol 2 (3) ◽  
pp. 510-520 ◽  
Author(s):  
Quan-Wen Jin ◽  
Dannel McCollum

ABSTRACT Cytokinesis in the fission yeast Schizosaccharomyces pombe is regulated by a signaling pathway termed the septation initiation network (SIN). The SIN is essential for initiation of actomyosin ring constriction and septum formation. In a screen to search for mutations that can rescue the sid2-250 SIN mutant, we obtained scw1-18. Both the scw1-18 mutant and the scw1 deletion mutant (scw1Δ mutant), have defects in cell separation. Both the scw1-18 and scw1Δ mutations rescue the growth defects of not just the sid2-250 mutant but also the other temperature-sensitive SIN mutants. Other cytokinesis mutants, such as those defective for actomyosin ring formation, are not rescued by scw1Δ. scw1Δ does not seem to rescue the SIN by restoring SIN signaling defects. However, scw1Δ may function downstream of the SIN to promote septum formation, since scw1Δ can rescue the septum formation defects of the cps1-191β-1,3-glucan synthase mutant, which is required for synthesis of the primary septum.


2005 ◽  
Vol 280 (43) ◽  
pp. 36502-36509 ◽  
Author(s):  
Fumihiko Niiya ◽  
Xiaozhen Xie ◽  
Kyung S. Lee ◽  
Hiroki Inoue ◽  
Toru Miki

Cleavage furrow formation marks the onset of cell division during early anaphase. The small GTPase RhoA and its regulators ECT2 and MgcRacGAP have been implicated in furrow ingression in mammalian cells, but the signaling upstream of these molecules remains unclear. We now show that the inhibition of cyclin-dependent kinase (Cdk)1 is sufficient to initiate cytokinesis. When mitotically synchronized cells were treated with the Cdk-specific inhibitor BMI-1026, the initiation of cytokinesis was induced precociously before chromosomal separation. Cytokinesis was also induced by the Cdk1-specific inhibitor purvalanol A but not by Cdk2/Cdk5- or Cdk4-specific inhibitors. Consistent with initiation of precocious cytokinesis by Cdk1 inhibition, introduction of anti-Cdk1 monoclonal antibody resulted in cells with aberrant nuclei. Depolymerization of mitotic spindles by nocodazole inhibited BMI-1026-induced precocious cytokinesis. However, in the presence of a low concentration of nocodazole, BMI-1026 induced excessive membrane blebbing, which appeared to be caused by formation of ectopic cleavage furrows. Depletion of ECT2 or MgcRacGAP by RNA interference abolished both of the phenotypes (precocious furrowing after nocodazole release and excessive blebbing in the presence of nocodazole). RNA interference of RhoA or expression of dominant-negative RhoA efficiently reduced both phenotypes. RhoA was localized at the cleavage furrow or at the necks of blebs. We propose that Cdk1 inactivation is sufficient to activate a signaling pathway leading to cytokinesis, which emanates from mitotic spindles and is regulated by ECT2, MgcRacGAP, and RhoA. Chemical induction of cytokinesis will be a valuable tool to study the initiation mechanism of cytokinesis.


2013 ◽  
Vol 24 (9) ◽  
pp. 1305-1320 ◽  
Author(s):  
Younghoon Oh ◽  
Jennifer Schreiter ◽  
Ryuichi Nishihama ◽  
Carsten Wloka ◽  
Erfei Bi

F-BAR proteins are membrane‑associated proteins believed to link the plasma membrane to the actin cytoskeleton in cellular processes such as cytokinesis and endocytosis. In the budding yeast Saccharomyces cerevisiae, the F‑BAR protein Hof1 localizes to the division site in a complex pattern during the cell cycle and plays an important role in cytokinesis. However, the mechanisms underlying its localization and function are poorly understood. Here we show that Hof1 contains three distinct targeting domains that contribute to cytokinesis differentially. The N‑terminal half of Hof1 localizes to the bud neck and the sites of polarized growth during the cell cycle. The neck localization is mediated mainly by an interaction between the second coiled‑coil region in the N‑terminus and the septin Cdc10, whereas the localization to the sites of polarized growth is mediated entirely by the F‑BAR domain. In contrast, the C‑terminal half of Hof1 interacts with Myo1, the sole myosin‑II heavy chain in budding yeast, and localizes to the bud neck in a Myo1‑dependent manner from the onset to the completion of cytokinesis. We also show that the SH3 domain in the C‑terminus plays an important role in maintaining the symmetry of Myo1 ring constriction during cytokinesis and that Hof1 interacts with Chs2, a chitin synthase that is required for primary septum formation. Together these data define a mechanism that accounts for the localization of Hof1 during the cell cycle and suggest that Hof1 may function in cytokinesis by coupling actomyosin ring constriction to primary septum formation through interactions with Myo1 and Chs2.


2018 ◽  
Vol 29 (5) ◽  
pp. 597-609 ◽  
Author(s):  
Meng Wang ◽  
Ryuichi Nishihama ◽  
Masayuki Onishi ◽  
John R. Pringle

In Saccharomyces cerevisiae, it is well established that Hof1, Cyk3, and Inn1 contribute to septum formation and cytokinesis. Because hof1∆ and cyk3∆ single mutants have relatively mild defects but hof1∆ cyk3∆ double mutants are nearly dead, it has been hypothesized that these proteins contribute to parallel pathways. However, there is also evidence that they interact physically. In this study, we examined this interaction and its functional significance in detail. Our data indicate that the interaction 1) is mediated by a direct binding of the Hof1 SH3 domain to a proline-rich motif in Cyk3; 2) occurs specifically at the time of cytokinesis but is independent of the (hyper)phosphorylation of both proteins that occurs at about the same time; 3) is dispensable for the normal localization of both proteins; 4) is essential for normal primary-septum formation and a normal rate of cleavage-furrow ingression; and 5) becomes critical for growth when either Inn1 or the type II myosin Myo1 (a key component of the contractile actomyosin ring) is absent. The similarity in phenotype between cyk3∆ mutants and mutants specifically lacking the Hof1–Cyk3 interaction suggests that the interaction is particularly important for Cyk3 function, but it may be important for Hof1 function as well.


2007 ◽  
Vol 18 (12) ◽  
pp. 5034-5047 ◽  
Author(s):  
Maria Grazia Giansanti ◽  
Giorgio Belloni ◽  
Maurizio Gatti

Rab11 is a small GTPase that regulates several aspects of vesicular trafficking. Here, we show that Rab11 accumulates at the cleavage furrow of Drosophila spermatocytes and that it is essential for cytokinesis. Mutant spermatocytes form regular actomyosin rings, but these rings fail to constrict to completion, leading to cytokinesis failures. rab11 spermatocytes also exhibit an abnormal accumulation of Golgi-derived vesicles at the telophase equator, suggesting a defect in membrane–vesicle fusion. These cytokinesis phenotypes are identical to those elicited by mutations in giotto (gio) and four wheel drive (fwd) that encode a phosphatidylinositol transfer protein and a phosphatidylinositol 4-kinase, respectively. Double mutant analysis and immunostaining for Gio and Rab11 indicated that gio, fwd, and rab11 function in the same cytokinetic pathway, with Gio and Fwd acting upstream of Rab11. We propose that Gio and Fwd mediate Rab11 recruitment at the cleavage furrow and that Rab11 facilitates targeted membrane delivery to the advancing furrow.


2008 ◽  
Vol 180 (2) ◽  
pp. 357-373 ◽  
Author(s):  
Paolo M. Mangahas ◽  
Xiaomeng Yu ◽  
Kenneth G. Miller ◽  
Zheng Zhou

We identify here a novel class of loss-of-function alleles of uncoordinated locomotion(unc)-108, which encodes the Caenorhabditis elegans homologue of the mammalian small guanosine triphosphatase Rab2. Like the previously isolated dominant-negative mutants, unc-108 loss-of-function mutant animals are defective in locomotion. In addition, they display unique defects in the removal of apoptotic cells, revealing a previously uncharacterized function for Rab2. unc-108 acts in neurons and engulfing cells to control locomotion and cell corpse removal, respectively, indicating that unc-108 has distinct functions in different cell types. Using time-lapse microscopy, we find that unc-108 promotes the degradation of engulfed cell corpses. It is required for the efficient recruitment and fusion of lysosomes to phagosomes and the acidification of the phagosomal lumen. In engulfing cells, UNC-108 is enriched on the surface of phagosomes. We propose that UNC-108 acts on phagosomal surfaces to promote phagosome maturation and suggest that mammalian Rab2 may have a similar function in the degradation of apoptotic cells.


2012 ◽  
Vol 23 (1) ◽  
pp. 45-58 ◽  
Author(s):  
Cheen Fei Chin ◽  
Alexis M. Bennett ◽  
Wai Kit Ma ◽  
Mark C. Hall ◽  
Foong May Yeong

Cytokinesis, which leads to the physical separation of two dividing cells, is normally restrained until after nuclear division. In Saccharomyces cerevisiae, chitin synthase 2 (Chs2), which lays down the primary septum at the mother–daughter neck, also ensures proper actomyosin ring constriction during cytokinesis. During the metaphase-to-anaphase transition, phosphorylation of Chs2 by the mitotic cyclin-dependent kinase (Cdk1) retains Chs2 at the endoplasmic reticulum (ER), thereby preventing its translocation to the neck. Upon Cdk1 inactivation at the end of mitosis, Chs2 is exported from the ER and targeted to the neck. The mechanism for triggering Chs2 ER export thus far is unknown. We show here that Chs2 ER export requires the direct reversal of the inhibitory Cdk1 phosphorylation sites by Cdc14 phosphatase, the ultimate effector of the mitotic exit network (MEN). We further show that only Cdc14 liberated by the MEN after completion of chromosome segregation, and not Cdc14 released in early anaphase by the Cdc fourteen early anaphase release pathway, triggers Chs2 ER exit. Presumably, the reduced Cdk1 activity in late mitosis further favors dephosphorylation of Chs2 by Cdc14. Thus, by requiring declining Cdk1 activity and Cdc14 nuclear release for Chs2 ER export, cells ensure that septum formation is contingent upon chromosome separation and exit from mitosis.


2007 ◽  
Vol 176 (3) ◽  
pp. 263-268 ◽  
Author(s):  
Adam C. Smith ◽  
Won Do Heo ◽  
Virginie Braun ◽  
Xiuju Jiang ◽  
Chloe Macrae ◽  
...  

Members of the Rab guanosine triphosphatase (GTPase) family are key regulators of membrane traffic. Here we examined the association of 48 Rabs with model phagosomes containing a non-invasive mutant of Salmonella enterica serovar Typhimurium (S. Typhimurium). This mutant traffics to lysosomes and allowed us to determine which Rabs localize to a maturing phagosome. In total, 18 Rabs associated with maturing phagosomes, each with its own kinetics of association. Dominant-negative mutants of Rab23 and 35 inhibited phagosome–lysosome fusion. A large number of Rab GTPases localized to wild-type Salmonella-containing vacuoles (SCVs), which do not fuse with lysosomes. However, some Rabs (8B, 13, 23, 32, and 35) were excluded from wild-type SCVs whereas others (5A, 5B, 5C, 7A, 11A, and 11B) were enriched on this compartment. Our studies demonstrate that a complex network of Rab GTPases controls endocytic progression to lysosomes and that this is modulated by S. Typhimurium to allow its intracellular growth.


2002 ◽  
Vol 157 (5) ◽  
pp. 819-830 ◽  
Author(s):  
Takahiro Tsuji ◽  
Toshimasa Ishizaki ◽  
Muneo Okamoto ◽  
Chiharu Higashida ◽  
Kazuhiro Kimura ◽  
...  

The small GTPase Rho acts on two effectors, ROCK and mDia1, and induces stress fibers and focal adhesions. However, how ROCK and mDia1 individually regulate signals and dynamics of these structures remains unknown. We stimulated serum-starved Swiss 3T3 fibroblasts with LPA and compared the effects of C3 exoenzyme, a Rho inhibitor, with those of Y-27632, a ROCK inhibitor. Y-27632 treatment suppressed LPA-induced formation of stress fibers and focal adhesions as did C3 exoenzyme but induced membrane ruffles and focal complexes, which were absent in the C3 exoenzyme-treated cells. This phenotype was suppressed by expression of N17Rac. Consistently, the amount of GTP-Rac increased significantly by Y-27632 in LPA-stimulated cells. Biochemically, Y-27632 suppressed tyrosine phosphorylation of paxillin and focal adhesion kinase and not that of Cas. Inhibition of Cas phosphorylation with PP1 or expression of a dominant negative Cas mutant inhibited Y-27632–induced membrane ruffle formation. Moreover, Crk-II mutants lacking in binding to either phosphorylated Cas or DOCK180 suppressed the Y-27632–induced membrane ruffle formation. Finally, expression of a dominant negative mDia1 mutant also inhibited the membrane ruffle formation by Y-27632. Thus, these results have revealed the Rho-dependent Rac activation signaling that is mediated by mDia1 through Cas phosphorylation and antagonized by the action of ROCK.


2001 ◽  
Vol 114 (8) ◽  
pp. 1579-1589 ◽  
Author(s):  
M. Reyes-Reyes ◽  
N. Mora ◽  
A. Zentella ◽  
C. Rosales

Integrin-mediated signals play an important but poorly understood role in regulating many leukocyte functions. In monocytes and monocytic leukemia cells, (β)1 integrin-mediated adhesion results in a strong induction of immediate-early genes that are important in inflammation. To investigate the signaling pathways from integrins in monocytic cells, THP-1 cells were stimulated via (β)1 integrins by binding to fibronectin and by crosslinking the integrins with specific monoclonal antibodies. The involvement of MAPK and PI 3-K on nuclear factor (κ)B (NF-(κ)B) activation was then analyzed. We found that integrins activated both NF-(κ)B and MAPK in a PI 3-K-dependent manner, as wortmannin and LY294002 blocked these responses. However, the specific MEK inhibitor PD98059 did not prevent integrin-mediated NF-(κ)B activation. In contrast, a dominant negative mutant of Rac completely prevented NF-(κ)B activation, but it did not affect MAPK activation. These results indicate that integrin signaling to NF-(κ)B is not mediated by the MAPK pathway, but rather by the small GTPase Rac. In addition, a dominant negative form of Ρ augmented NF-(κ)B activation and blocked MAPK activation, implying that these two pathways are in competition with each other. These data suggest that integrins activate different signaling pathways in monocytic cells. One uses PI 3-K and Rac to activate NF-(κ)B, while the other uses PI 3-K, MEK, and MAPK to activate other nuclear factors, such as Elk-1.


Sign in / Sign up

Export Citation Format

Share Document