scholarly journals Retargeting of macroH2A following mitosis to cytogenetic-scale heterochromatic domains

2019 ◽  
Vol 218 (6) ◽  
pp. 1810-1823 ◽  
Author(s):  
Hanae Sato ◽  
Bin Wu ◽  
Fabien Delahaye ◽  
Robert H. Singer ◽  
John M. Greally

The heritability of chromatin states through cell division is a potential contributor to the epigenetic maintenance of cellular memory of prior states. The macroH2A histone variant has properties of a regulator of epigenetic cell memory, including roles controlling gene silencing and cell differentiation. Its mechanisms of regional genomic targeting and maintenance through cell division are unknown. Here, we combined in vivo imaging with biochemical and genomic approaches to show that human macroH2A is incorporated into chromatin in the G1 phase of the cell cycle following DNA replication. The newly incorporated macroH2A retargets the same large heterochromatic domains where macroH2A was already enriched in the previous cell cycle. It remains heterotypic, targeting individual nucleosomes that do not already contain a macroH2A molecule. The pattern observed resembles that of a new deposition of centromeric histone variants during the cell cycle, indicating mechanistic similarities for macrodomain-scale regulation of epigenetic properties of the cell.

2018 ◽  
Author(s):  
Hanae Sato ◽  
Bin Wu ◽  
Fabien Delahaye ◽  
Robert H. Singer ◽  
John M. Greally

SUMMARYThe heritability of chromatin states through cell division is a potential contributor to the epigenetic maintenance of cellular memory of prior states. The macroH2A histone variant has properties of a regulator of epigenetic cell memory, including roles controlling gene silencing and cell differentiation. Its mechanisms of regional genomic targeting and maintenance through cell division are unknown. Here we combined in vivo imaging with biochemical and genomic approaches to show that human macroH2A is incorporated into chromatin in the G1 phase of the cell cycle following DNA replication. The newly-incorporated macroH2A re-targets the same, large heterochromatic domains where macroH2A was already enriched in the previous cell cycle. It remains heterotypic, targeting individual nucleosomes that do not already contain a macroH2A molecule. The pattern observed resembles that of new deposition of centromeric histone variants during the cell cycle, indicating mechanistic similarities for macrodomain-scale regulation of epigenetic properties of the cell.


Author(s):  
Liu Mei ◽  
Jeanette Gowen Cook

The cell division cycle must be strictly regulated during both development and adult maintenance, and efficient and well-controlled DNA replication is a key event in the cell cycle. DNA replication origins are prepared in G1 phase of the cell cycle in a process known as origin licensing which is essential for DNA replication initiation in the subsequent S phase. Appropriate origin licensing includes: (1) Licensing enough origins at adequate origin licensing speed to complete licensing before G1 phase ends; (2) Licensing origins such that they are well-distributed on all chromosomes. Both aspects of licensing are critical for replication efficiency and accuracy. In this minireview, we will discuss recent advances in defining how origin licensing speed and distribution are critical to ensure DNA replication completion and genome stability.


2018 ◽  
Author(s):  
Yizhuo Zhou ◽  
Pedro N. Pozo ◽  
Seeun Oh ◽  
Haley M. Stone ◽  
Jeanette Gowen Cook

AbstractAchieving complete and precise genome duplication requires that each genomic segment be replicated only once per cell division cycle. Protecting large eukaryotic genomes from re-replication requires an overlapping set of molecular mechanisms that prevent the first DNA replication step, the DNA loading of MCM helicase complexes to license replication origins. Previous reports have defined many such origin licensing inhibition mechanisms, but the temporal relationships among them are not clear, particularly with respect to preventing re-replication in G2 and M phases. Using a combination of mutagenesis, biochemistry, and single cell analyses in human cells, we define a new mechanism that prevents re-replication through hyperphosphorylation of the essential MCM loading protein, Cdt1. We demonstrate that Cyclin A/CDK1 hyperphosphorylates Cdt1 to inhibit MCM re-loading in G2 phase. The mechanism of inhibition is to block Cdt1 binding to MCM independently of other known Cdt1 inactivation mechanisms such as Cdt1 degradation during S phase or Geminin binding. Moreover, we provide evidence that protein phosphatase 1-dependent Cdt1 dephosphorylation at the mitosis-to-G1 phase transition re-activates Cdt1. We propose that multiple distinct, non-redundant licensing inhibition mechanisms act in a series of sequential relays through each cell cycle phase to ensure precise genome duplication.Author SummaryThe initial step of DNA replication is loading the DNA helicase, MCM, onto DNA during the first phase of the cell division cycle. If MCM loading occurs inappropriately onto DNA that has already been replicated, then cells risk DNA re-replication, a source of endogenous DNA damage and genome instability. How mammalian cells prevent any sections of their very large genomes from re-replicating is still not fully understood. We found that the Cdt1 protein, one of the critical MCM loading factors, is inhibited specifically in late cell cycle stages through a mechanism involving protein phosphorylation. This phosphorylation prevents Cdt1 from binding MCM; when Cdt1 can’t be phosphorylated MCM is inappropriately re-loaded onto DNA and cells are prone to re-replication. When cells divide and transition into G1 phase, Cdt1 is then dephosphorylated to re-activate it for MCM loading. Based on these findings we assert that the different mechanisms that cooperate to avoid re-replication are not redundant, but rather distinct mechanisms are dominant in different cell cycle phases. These findings have implications for understanding how genomes are duplicated precisely once per cell cycle and shed light on how that process is perturbed by changes in Cdt1 levels or phosphorylation activity.


2019 ◽  
Vol 202 (2) ◽  
Author(s):  
Peter E. Burby ◽  
Lyle A. Simmons

ABSTRACT All organisms regulate cell cycle progression by coordinating cell division with DNA replication status. In eukaryotes, DNA damage or problems with replication fork progression induce the DNA damage response (DDR), causing cyclin-dependent kinases to remain active, preventing further cell cycle progression until replication and repair are complete. In bacteria, cell division is coordinated with chromosome segregation, preventing cell division ring formation over the nucleoid in a process termed nucleoid occlusion. In addition to nucleoid occlusion, bacteria induce the SOS response after replication forks encounter DNA damage or impediments that slow or block their progression. During SOS induction, Escherichia coli expresses a cytoplasmic protein, SulA, that inhibits cell division by directly binding FtsZ. After the SOS response is turned off, SulA is degraded by Lon protease, allowing for cell division to resume. Recently, it has become clear that SulA is restricted to bacteria closely related to E. coli and that most bacteria enforce the DNA damage checkpoint by expressing a small integral membrane protein. Resumption of cell division is then mediated by membrane-bound proteases that cleave the cell division inhibitor. Further, many bacterial cells have mechanisms to inhibit cell division that are regulated independently from the canonical LexA-mediated SOS response. In this review, we discuss several pathways used by bacteria to prevent cell division from occurring when genome instability is detected or before the chromosome has been fully replicated and segregated.


Author(s):  
Julia Carroll ◽  
Nicolas Van Oostende ◽  
Bess B. Ward

Standard methods for calculating microbial growth rates (μ) through the use of proxies, such as in situ fluorescence, cell cycle, or cell counts, are critical for determining the magnitude of the role bacteria play in marine carbon (C) and nitrogen (N) cycles. Taxon-specific growth rates in mixed assemblages would be useful for attributing biogeochemical processes to individual species and understanding niche differentiation among related clades, such as found in Synechococcus and Prochlorococcus . We tested three novel DNA sequencing-based methods (iRep, bPTR, and GRiD) for evaluating growth of light synchronized Synechococcus cultures under different light intensities and temperatures. In vivo fluorescence and cell cycle analysis were used to obtain standard estimates of growth rate for comparison with the sequence-based methods (SBM). None of the SBM values were correlated with growth rates calculated by standard techniques despite the fact that all three SBM were correlated with percentage of cells in S phase (DNA replication) over the diel cycle. Inaccuracy in determining the time of maximum DNA replication is unlikely to account entirely for the absence of relationship between SBM and growth rate, but the fact that most microbes in the surface ocean exhibit some degree of diel cyclicity is a caution for application of these methods. SBM correlate with DNA replication but cannot be interpreted quantitatively in terms of growth rate. Importance Small but abundant, cyanobacterial strains such as the photosynthetic Synechococcus spp. are essential because they contribute significantly to primary productivity in the ocean. These bacteria generate oxygen and provide biologically-available carbon, which is essential for organisms at higher trophic levels. The small size and diversity of natural microbial assemblages means that taxon-specific activities (e.g., growth rate) are difficult to obtain in the field. It has been suggested that sequence-based methods (SBM) may be able to solve this problem. We find, however, that SBM can detect DNA replication and are correlated with phases of the cell cycle but cannot be interpreted in terms of absolute growth rate for Synechococcus cultures growing under a day-night cycle, like that experienced in the ocean.


Development ◽  
1998 ◽  
Vol 125 (12) ◽  
pp. 2223-2234 ◽  
Author(s):  
B.Y. Lu ◽  
J. Ma ◽  
J.C. Eissenberg

The roles of differentiation, mitotic activity and intrinsic promoter strength in the maintenance of heterochromatic silencing were investigated during development using an inducible lacZ gene as an in vivo probe. Heterochromatic silencing is initiated at the onset of gastrulation, approximately 1 hour after heterochromatin is first visible cytologically. A high degree of silencing is maintained in the mitotically active imaginal cells from mid-embryogenesis until early third instar larval stage, and extensive relaxation of silencing is tightly associated with the onset of differentiation. Relaxation of silencing can be triggered in vitro by ecdysone. In contrast, timing and extent of silencing at both the initiation and relaxation stages are insensitive to changes in cell cycle activity, and intrinsic promoter strength also does not influence the extent of silencing by heterochromatin. These data suggest that the silencing activity of heterochromatin is developmentally programmed.


2012 ◽  
Vol 80 (4) ◽  
pp. 1467-1478 ◽  
Author(s):  
Carolina Coelho ◽  
Lydia Tesfa ◽  
Jinghang Zhang ◽  
Johanna Rivera ◽  
Teresa Gonçalves ◽  
...  

ABSTRACTWe investigated the outcome of the interaction ofCryptococcus neoformanswith murine macrophages using laser scanning cytometry (LSC). Previous results in our lab had shown that phagocytosis ofC. neoformanspromoted cell cycle progression. LSC allowed us to simultaneously measure the phagocytic index, macrophage DNA content, and 5-ethynyl-2′-deoxyuridine (EdU) incorporation such that it was possible to study host cell division as a function of phagocytosis. LSC proved to be a robust, reliable, and high-throughput method for quantifying phagocytosis. Phagocytosis ofC. neoformanspromoted cell cycle progression, but infected macrophages were significantly less likely to complete mitosis. Hence, we report a new cytotoxic effect associated with intracellularC. neoformansresidence that manifested itself in impaired cell cycle completion as a consequence of a block in the G2/M stage of the mitotic cell cycle. Cell cycle arrest was not due to increased cell membrane permeability or DNA damage. We investigated alveolar macrophage replicationin vivoand demonstrated that these cells are capable of low levels of cell division in the presence or absence ofC. neoformansinfection. In summary, we simultaneously studied phagocytosis, the cell cycle state of the host cell and pathogen-mediated cytotoxicity, and our results demonstrate a new cytotoxic effect ofC. neoformansinfection on murine macrophages: fungus-induced cell cycle arrest. Finally, we provide evidence for alveolar macrophage proliferationin vivo.


Genetics ◽  
1993 ◽  
Vol 134 (1) ◽  
pp. 63-80 ◽  
Author(s):  
T A Weinert ◽  
L H Hartwell

Abstract In eucaryotes a cell cycle control called a checkpoint ensures that mitosis occurs only after chromosomes are completely replicated and any damage is repaired. The function of this checkpoint in budding yeast requires the RAD9 gene. Here we examine the role of the RAD9 gene in the arrest of the 12 cell division cycle (cdc) mutants, temperature-sensitive lethal mutants that arrest in specific phases of the cell cycle at a restrictive temperature. We found that in four cdc mutants the cdc rad9 cells failed to arrest after a shift to the restrictive temperature, rather they continued cell division and died rapidly, whereas the cdc RAD cells arrested and remained viable. The cell cycle and genetic phenotypes of the 12 cdc RAD mutants indicate the function of the RAD9 checkpoint is phase-specific and signal-specific. First, the four cdc RAD mutants that required RAD9 each arrested in the late S/G2 phase after a shift to the restrictive temperature when DNA replication was complete or nearly complete, and second, each leaves DNA lesions when the CDC gene product is limiting for cell division. Three of the four CDC genes are known to encode DNA replication enzymes. We found that the RAD17 gene is also essential for the function of the RAD9 checkpoint because it is required for phase-specific arrest of the same four cdc mutants. We also show that both X- or UV-irradiated cells require the RAD9 and RAD17 genes for delay in the G2 phase. Together, these results indicate that the RAD9 checkpoint is apparently activated only by DNA lesions and arrests cell division only in the late S/G2 phase.


Sign in / Sign up

Export Citation Format

Share Document