scholarly journals The postmitotic midbody: Regulating polarity, stemness, and proliferation

2019 ◽  
Vol 218 (12) ◽  
pp. 3903-3911 ◽  
Author(s):  
Eric Peterman ◽  
Rytis Prekeris

Abscission, the final stage of cell division, requires well-orchestrated changes in endocytic trafficking, microtubule severing, actin clearance, and the physical sealing of the daughter cell membranes. These processes are highly regulated, and any missteps in localized membrane and cytoskeleton dynamics often lead to a delay or a failure in cell division. The midbody, a microtubule-rich structure that forms during cytokinesis, is a key regulator of abscission and appears to function as a signaling platform coordinating cytoskeleton and endosomal dynamics during the terminal stages of cell division. It was long thought that immediately following abscission and the conclusion of cell division, the midbody is either released or rapidly degraded by one of the daughter cells. Recently, the midbody has gained prominence for exerting postmitotic functions. In this review, we detail the role of the midbody in orchestrating abscission, as well as discuss the relatively new field of postabscission midbody biology, particularly focusing on how it may act to regulate cell polarity and its potential to regulate cell tumorigenicity or stemness.

2001 ◽  
Vol 155 (4) ◽  
pp. 613-624 ◽  
Author(s):  
Frédéric Delbac ◽  
Astrid Sänger ◽  
Eva M. Neuhaus ◽  
Rolf Stratmann ◽  
James W. Ajioka ◽  
...  

In apicomplexan parasites, actin-disrupting drugs and the inhibitor of myosin heavy chain ATPase, 2,3-butanedione monoxime, have been shown to interfere with host cell invasion by inhibiting parasite gliding motility. We report here that the actomyosin system of Toxoplasma gondii also contributes to the process of cell division by ensuring accurate budding of daughter cells. T. gondii myosins B and C are encoded by alternatively spliced mRNAs and differ only in their COOH-terminal tails. MyoB and MyoC showed distinct subcellular localizations and dissimilar solubilities, which were conferred by their tails. MyoC is the first marker selectively concentrated at the anterior and posterior polar rings of the inner membrane complex, structures that play a key role in cell shape integrity during daughter cell biogenesis. When transiently expressed, MyoB, MyoC, as well as the common motor domain lacking the tail did not distribute evenly between daughter cells, suggesting some impairment in proper segregation. Stable overexpression of MyoB caused a significant defect in parasite cell division, leading to the formation of extensive residual bodies, a substantial delay in replication, and loss of acute virulence in mice. Altogether, these observations suggest that MyoB/C products play a role in proper daughter cell budding and separation.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 571-571
Author(s):  
William T. Tse ◽  
Livana Soetedjo ◽  
Timothy Lax ◽  
Lei Wang ◽  
Patrick J. Kennedy

Abstract Abstract 571 Asymmetric cell division, a proposed mechanism by which hematopoietic progenitor/stem cells (HPSC) maintain a balance between self-renewal and differentiation, has rarely been observed. Here we report the surprising finding that cultured mouse primary HPSC routinely generate pairs of daughter cells with 2 distinct phenotypes after a single round of cell division. Mouse bone marrow cells were cultured on chamber slides in the presence of stem cell factor (SCF). BrdU was added overnight to label dividing cells, and the cells were examined by immunofluorescence microscopy on day 2–4 of culture. In each BrdU+c-Kit+ divided cell doublet, c-Kit was invariably expressed in only 1 of the 2 daughter cells. In contrast, the other daughter cell was negative for c-Kit but positive for the asymmetric cell fate determinant Numb and mature myeloid markers Mac1, Gr1, M-CSFR and F4/80. Similarly, in each BrdU+Sca1+ cell doublet, 1 daughter cell was positive for the stem cell markers Sca1, c-Kit, CD150 and CD201, whereas the other cell was negative for these markers but positive for Numb and the mature myeloid markers. Analysis of 400 such doublets showed that the probability of HPSC undergoing asymmetric division was 99.5% (95% confidence interval 98–100%), indicating that asymmetric division in HPSC is in fact not rare but obligatory. In other model systems, it has been shown that activation of the atypical protein kinase C (aPKC)-Par6-Par3 cell polarity complex and realignment of the microtubule cytoskeleton precede asymmetric cell division. We asked whether similar steps are involved in the asymmetric division of HPSC. We found that c-Kit receptors, upon stimulation by SCF, rapidly capped at an apical pole next to the microtubule-organizing center, followed by redistribution to the same pole of the aPKC-Par6-Par3 complex and microtubule-stabilizing proteins APC, β-catenin, EB1 and IQGAP1. Strikingly, after cell division, the aPKC-Par6-Par3 complex and other polarity markers all partitioned only into the c-Kit+/Sca1+ daughter cell and not the mature daughter cell. The acetylated and detyrosinated forms of stabilized microtubules were also present only in the c-Kit+/Sca1+ cell, as were the Aurora A and Polo-like kinases, 2 mitotic kinases associated with asymmetric cell division. To understand how c-Kit activation triggers downstream polarization events, we studied the role of lipid rafts, cholesterol-enriched microdomains in the cell membrane that serve as organization centers of signaling complexes. These are enriched in phosphatidylinositol 4,5-bisphosphate and annexin 2, putative attachment sites for the aPKC-Par6-Par3 complex. We found that SCF stimulation led to coalescence of lipid raft components at the site of the c-Kit cap, and treatment with a wide range of inhibitors that blocked lipid raft formation abrogated polarization of the aPKC-Par6-Par3 complex and division of the c-Kit+/Sca1+ cells. Because obligatory asymmetric division in cultured HPSC would prevent a net increase in their number, we sought a way to bypass its mechanism. We tested whether inhibition of protein phosphatase 2A (PP2A), a physiological antagonist of aPKC, would enhance aPKC activity and promote self-renewal of HPSC. Treatment of cultured HPSC with okadaic acid or calyculin, 2 well-characterized PP2A inhibitors, increased the percent of c-Kit+/Sca1+ cells undergoing symmetric division from 0% to 23.3% (p<0.001). In addition, small colonies comprised of symmetrically dividing cells uniformly positive for Sca1, c-Kit, CD150 and CD201 were noted in the culture. To functionally characterize the effect of PP2A inhibition, mouse bone marrow cells were cultured in the absence or presence of PP2A inhibitors and transplanted into irradiated congenic mice in a competitive repopulation assay. At 4–8 weeks post-transplant, the donor engraftment rate increased from ∼1 in mice transplanted with untreated cells to >30% in mice transplanted with PP2A inhibitor-treated cells. This dramatic increase indicates that PP2A inhibition can effectively perturb the mechanism of asymmetric cell division and promote the self-renewal of HPSC. In summary, our data showed that obligatory asymmetric cell division works to maintain a strict balance between self-renewal and differentiation in HPSC and pharmacological manipulation of the cell polarity machinery could potentially be used to expand HPSC for clinical use. Disclosures: No relevant conflicts of interest to declare.


2008 ◽  
Vol 7 (9) ◽  
pp. 1500-1512 ◽  
Author(s):  
Jennifer L. Gordon ◽  
Wandy L. Beatty ◽  
L. David Sibley

ABSTRACT Cell division in Toxoplasma gondii occurs by an unusual budding mechanism termed endodyogeny, during which twin daughters are formed within the body of the mother cell. Cytokinesis begins with the coordinated assembly of the inner membrane complex (IMC), which surrounds the growing daughter cells. The IMC is compiled of both flattened membrane cisternae and subpellicular filaments composed of articulin-like proteins attached to underlying singlet microtubules. While proteins that comprise the elongating IMC have been described, little is known about its initial formation. Using Toxoplasma as a model system, we demonstrate that actin-like protein 1 (ALP1) is partially redistributed to the IMC at early stages in its formation. Immunoelectron microscopy localized ALP1 to a discrete region of the nuclear envelope, on transport vesicles, and on the nascent IMC of the daughter cells prior to the arrival of proteins such as IMC-1. The overexpression of ALP1 under the control of a strong constitutive promoter disrupted the formation of the daughter cell IMC, leading to delayed growth and defects in nuclear and apicoplast segregation. Collectively, these data suggest that ALP1 participates in the formation of daughter cell membranes during cell division in apicomplexan parasites.


2018 ◽  
Author(s):  
Sara Molinari ◽  
David L. Shis ◽  
James Chappell ◽  
Oleg A. Igoshin ◽  
Matthew R. Bennett

AbstractA defining property of stem cells is their ability to differentiate via asymmetric cell division, in which a stem cell creates a differentiated daughter cell but retains its own phenotype. Here, we describe a synthetic genetic circuit for controlling asymmetrical cell division in Escherichia coli. Specifically, we engineered an inducible system that can bind and segregate plasmid DNA to a single position in the cell. Upon division, the co-localized plasmids are kept by one and only one of the daughter cells. The other daughter cell receives no plasmid DNA and is hence irreversibly differentiated from its sibling. In this way, we achieved asymmetric cell division though asymmetric plasmid partitioning. We also characterized an orthogonal inducible circuit that enables the simultaneous asymmetric partitioning of two plasmid species – resulting in pluripotent cells that have four distinct differentiated states. These results point the way towards engineering multicellular systems from prokaryotic hosts.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Benoit G Godard ◽  
Remi Dumollard ◽  
Carl-Philipp Heisenberg ◽  
Alex McDougall

Cell division orientation is thought to result from a competition between cell geometry and polarity domains controlling the position of the mitotic spindle during mitosis. Depending on the level of cell shape anisotropy or the strength of the polarity domain, one dominates the other and determines the orientation of the spindle. Whether and how such competition is also at work to determine unequal cell division (UCD), producing daughter cells of different size, remains unclear. Here, we show that cell geometry and polarity domains cooperate, rather than compete, in positioning the cleavage plane during UCDs in early ascidian embryos. We found that the UCDs and their orientation at the ascidian third cleavage rely on the spindle tilting in an anisotropic cell shape, and cortical polarity domains exerting different effects on spindle astral microtubules. By systematically varying mitotic cell shape, we could modulate the effect of attractive and repulsive polarity domains and consequently generate predicted daughter cell size asymmetries and position. We therefore propose that the spindle position during UCD is set by the combined activities of cell geometry and polarity domains, where cell geometry modulates the effect of cortical polarity domain(s).


1983 ◽  
Vol 61 (1) ◽  
pp. 273-287
Author(s):  
K.K. Hjelm

The relative daughter cell volume (RDCV) values for Tetrahymena pyriformis were determined at division on live cells. It was found that the anterior cell is generally larger than the posterior cell, and that the RDCV values are distributed in groups 5–6% apart. The RDCV value was found to be independent of predivision cell volume, indicating that the mother cell is divided into proportional volumes. The cells seem, however, not to assess volume directly but rather a parameter related to the cell volume. Furthermore, the RDCV value was found to increase during cell division, so that the final value is not reached until actual separation of daughter cells. It is suggested that the division furrow is positioned so that the area of the cell surface lying between the old oral apparatus and the posterior pole of the cell is divided into equal parts. It is further suggested that several alternative values of the RDCV are possible, only one of which is expressed in each cell. The early division furrow is placed anteriorly to its final position, and its location is adjusted during cytokinesis.


Cells ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 684 ◽  
Author(s):  
Pisciottani ◽  
Biancolillo ◽  
Ferrara ◽  
Valente ◽  
Sardina ◽  
...  

Abscission is the final step of cell division, mediating the physical separation of the two daughter cells. A key player in this process is the microtubule-severing enzyme spastin that localizes at the midbody where its activity is crucial to cut microtubules and culminate the cytokinesis. Recently, we demonstrated that HIPK2, a multifunctional kinase involved in several cellular pathways, contributes to abscission and prevents tetraploidization. Here, we show that HIPK2 binds and phosphorylates spastin at serine 268. During cytokinesis, the midbody-localized spastin is phosphorylated at S268 in HIPK2-proficient cells. In contrast, no spastin is detectable at the midbody in HIPK2-depleted cells. The non-phosphorylatable spastin-S268A mutant does not localize at the midbody and cannot rescue HIPK2-depleted cells from abscission defects. In contrast, the phosphomimetic spastin-S268D mutant localizes at the midbody and restores successful abscission in the HIPK2-depleted cells. These results show that spastin is a novel target of HIPK2 and that HIPK2-mediated phosphorylation of spastin contributes to its midbody localization for successful abscission.


1997 ◽  
Vol 8 (12) ◽  
pp. 2617-2629 ◽  
Author(s):  
Ji-Hong Zang ◽  
Guy Cavet ◽  
James H. Sabry ◽  
Peter Wagner ◽  
Sheri L. Moores ◽  
...  

We have investigated the role of myosin in cytokinesis inDictyostelium cells by examining cells under both adhesive and nonadhesive conditions. On an adhesive surface, both wild-type and myosin-null cells undergo the normal processes of mitotic rounding, cell elongation, polar ruffling, furrow ingression, and separation of daughter cells. When cells are denied adhesion through culturing in suspension or on a hydrophobic surface, wild-type cells undergo these same processes. However, cells lacking myosin round up and polar ruffle, but fail to elongate, furrow, or divide. These differences show that cell division can be driven by two mechanisms that we term Cytokinesis A, which requires myosin, and Cytokinesis B, which is cell adhesion dependent. We have used these approaches to examine cells expressing a myosin whose two light chain-binding sites were deleted (ΔBLCBS-myosin). Although this myosin is a slower motor than wild-type myosin and has constitutively high activity due to the abolition of regulation by light-chain phosphorylation, cells expressing ΔBLCBS-myosin were previously shown to divide in suspension ( Uyeda et al., 1996 ). However, we suspected their behavior during cytokinesis to be different from wild-type cells given the large alteration in their myosin. Surprisingly, ΔBLCBS-myosin undergoes relatively normal spatial and temporal changes in localization during mitosis. Furthermore, the rate of furrow progression in cells expressing a ΔBLCBS-myosin is similar to that in wild-type cells.


Physiology ◽  
2011 ◽  
Vol 26 (3) ◽  
pp. 171-180 ◽  
Author(s):  
Viola Hélène Lobert ◽  
Harald Stenmark

The endosomal sorting complex required for transport (ESCRT) machinery has been implicated in the regulation of endosomal sorting, cell division, viral budding, autophagy, and cell signaling. Here, we review recent evidence that implicates ESCRTs in cell polarity and cell migration, and discuss the potential role of ESCRTs as tumor suppressors.


Sign in / Sign up

Export Citation Format

Share Document