scholarly journals STING induces LC3B lipidation onto single-membrane vesicles via the V-ATPase and ATG16L1-WD40 domain

2020 ◽  
Vol 219 (12) ◽  
Author(s):  
Tara D. Fischer ◽  
Chunxin Wang ◽  
Benjamin S. Padman ◽  
Michael Lazarou ◽  
Richard J. Youle

Following the detection of cytosolic double-stranded DNA from viral or bacterial infection in mammalian cells, cyclic dinucleotide activation of STING induces interferon β expression to initiate innate immune defenses. STING activation also induces LC3B lipidation, a classical but equivocal marker of autophagy, that promotes a cell-autonomous antiviral response that arose before evolution of the interferon pathway. We report that STING activation induces LC3B lipidation onto single-membrane perinuclear vesicles mediated by ATG16L1 via its WD40 domain, bypassing the requirement of canonical upstream autophagy machinery. This process is blocked by bafilomycin A1 that binds and inhibits the vacuolar ATPase (V-ATPase) and by SopF, a bacterial effector that catalytically modifies the V-ATPase to inhibit LC3B lipidation via ATG16L1. These results indicate that activation of the cGAS-STING pathway induces V-ATPase–dependent LC3B lipidation that may mediate cell-autonomous host defense, an unanticipated mechanism that is distinct from LC3B lipidation onto double-membrane autophagosomes.

2015 ◽  
Vol 112 (22) ◽  
pp. 7027-7032 ◽  
Author(s):  
Shouhei Kobayashi ◽  
Takako Koujin ◽  
Tomoko Kojidani ◽  
Hiroko Osakada ◽  
Chie Mori ◽  
...  

Knowledge of the mechanisms by which a cell detects exogenous DNA is important for controlling pathogen infection, because most pathogens entail the presence of exogenous DNA in the cytosol, as well as for understanding the cell’s response to artificially transfected DNA. The cellular response to pathogen invasion has been well studied. However, spatiotemporal information of the cellular response immediately after exogenous double-stranded DNA (dsDNA) appears in the cytosol is lacking, in part because of difficulties in monitoring when exogenous dsDNA enters the cytosol of the cell. We have recently developed a method to monitor endosome breakdown around exogenous materials using transfection reagent-coated polystyrene beads incorporated into living human cells as the objective for microscopic observations. In the present study, using dsDNA-coated polystyrene beads (DNA-beads) incorporated into living cells, we show that barrier-to-autointegration factor (BAF) bound to exogenous dsDNA immediately after its appearance in the cytosol at endosome breakdown. The BAF+ DNA-beads then assembled a nuclear envelope (NE)-like membrane and avoided autophagy that targeted the remnants of the endosome membranes. Knockdown of BAF caused a significant decrease in the assembly of NE-like membranes and increased the formation of autophagic membranes around the DNA-beads, suggesting that BAF-mediated assembly of NE-like membranes was required for the DNA-beads to evade autophagy. Importantly, BAF-bound beads without dsDNA also assembled NE-like membranes and avoided autophagy. We propose a new role for BAF: remodeling intracellular membranes upon detection of dsDNA in mammalian cells.


2006 ◽  
Vol 34 (3) ◽  
pp. 335-339 ◽  
Author(s):  
F.R. Maxfield ◽  
M. Mondal

The pathways involved in the intracellular transport and distribution of lipids in general, and sterols in particular, are poorly understood. Cholesterol plays a major role in modulating membrane bilayer structure and important cellular functions, including signal transduction and membrane trafficking. Both the overall cholesterol content of a cell, as well as its distribution in specific organellar membranes are stringently regulated. Several diseases, many of which are incurable at present, have been characterized as results of impaired cholesterol transport and/or storage in the cells. Despite their importance, many fundamental aspects of intracellular sterol transport and distribution are not well understood. For instance, the relative roles of vesicular and non-vesicular transport of cholesterol have not yet been fully determined, nor are the non-vesicular transport mechanisms well characterized. Similarly, whether cholesterol is asymmetrically distributed between the two leaflets of biological membranes, and if so, how this asymmetry is maintained, is poorly understood. In this review, we present a summary of the current understanding of these aspects of intracellular trafficking and distribution of lipids, and more specifically, of sterols.


1984 ◽  
Vol 4 (4) ◽  
pp. 681-687
Author(s):  
B Love ◽  
M B Rotheim

Tetrahymena ciliary membrane vesicles are shown to interact with preconjugant cells in a mating type-specific way. When cells are treated with vesicles of a different mating type before mixing for conjugation, cell pairing is enhanced, and the normal prepairing period is partially eliminated. This enhancement is mating type specific since it is not observed after pretreatment of cells with vesicles of their own mating type. In contrast, when vesicles are added at the time of mixing of two starved cultures, cell pairing is delayed in a concentration-dependent manner. By varying the conditions, we demonstrated enhancement or inhibition, or both. These results are interpreted in terms of two independent interactions of cells with vesicles. We suggest that first, vesicles substitute for another cell in cell-cell prepairing interaction and second, vesicles compete for adhesion sites produced during the prepairing period. Finally, the data presented are summarized within a speculative framework that calls attention to potential analogies with hormone-receptor signaling in mammalian cells.


2018 ◽  
Vol 19 (11) ◽  
pp. 3569 ◽  
Author(s):  
Lilas Courtot ◽  
Jean-Sébastien Hoffmann ◽  
Valérie Bergoglio

Genome stability requires tight regulation of DNA replication to ensure that the entire genome of the cell is duplicated once and only once per cell cycle. In mammalian cells, origin activation is controlled in space and time by a cell-specific and robust program called replication timing. About 100,000 potential replication origins form on the chromatin in the gap 1 (G1) phase but only 20–30% of them are active during the DNA replication of a given cell in the synthesis (S) phase. When the progress of replication forks is slowed by exogenous or endogenous impediments, the cell must activate some of the inactive or “dormant” origins to complete replication on time. Thus, the many origins that may be activated are probably key to protect the genome against replication stress. This review aims to discuss the role of these dormant origins as safeguards of the human genome during replicative stress.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1911
Author(s):  
Anastasiya Oshchepkova ◽  
Oleg Markov ◽  
Evgeniy Evtushenko ◽  
Alexander Chernonosov ◽  
Elena Kiseleva ◽  
...  

The main advantage of extracellular vesicles (EVs) as a drug carrier system is their low immunogenicity and internalization by mammalian cells. EVs are often considered a cell-specific delivery system, but the production of preparative amounts of EVs for therapeutic applications is challenging due to their laborious isolation and purification procedures. Alternatively, mimetic vesicles prepared from the cellular plasma membrane can be used in the same way as natural EVs. For example, a cytoskeleton-destabilizing agent, such as cytochalasin B, allows the preparation of membrane vesicles by a series of centrifugations. Here, we prepared cytochalasin-B-inducible nanovesicles (CINVs) of various cellular origins and studied their tropism in different mammalian cells. We observed that CINVs derived from human endometrial mesenchymal stem cells exhibited an enhanced affinity to epithelial cancer cells compared to myeloid, lymphoid or neuroblastoma cancer cells. The dendritic cell-derived CINVs were taken up by all studied cell lines with a similar efficiency that differed from the behavior of DC-derived EVs. The ability of cancer cells to internalize CINVs was mainly determined by the properties of recipient cells, and the cellular origin of CINVs was less important. In addition, receptor-mediated interactions were shown to be necessary for the efficient uptake of CINVs. We found that CINVs, derived from late apoptotic/necrotic cells (aCINVs) are internalized by in myelogenous (K562) 10-fold more efficiently than CINVs, and interact much less efficiently with melanocytic (B16) or epithelial (KB-3-1) cancer cells. Finally, we found that CINVs caused a temporal and reversible drop of the rate of cell division, which restored to the level of control cells with a 24 h delay.


2021 ◽  
Author(s):  
Long Jiang ◽  
Katrine Ingelshed ◽  
Yunbing Shen ◽  
Sanjaykumar V. Boddul ◽  
Vaishnavi Srinivasan Iyer ◽  
...  

CRISPR/Cas9 can be used to inactivate or modify genes by inducing double-stranded DNA breaks1–3. As a protective cellular response, DNA breaks result in p53-mediated cell cycle arrest and activation of cell death programs4,5. Inactivating p53 mutations are the most commonly found genetic alterations in cancer, highlighting the important role of the gene6–8. Here, we show that cells deficient in p53, as well as in genes of a core CRISPR-p53 tumor suppressor interactome, are enriched in a cell population when CRISPR is applied. Such enrichment could pose a challenge for clinical CRISPR use. Importantly, we identify that transient p53 inhibition suppresses the enrichment of cells with these mutations. Furthermore, in a data set of >800 human cancer cell lines, we identify parameters influencing the enrichment of p53 mutated cells, including strong baseline CDKN1A expression as a predictor for an active CRISPR-p53 axis. Taken together, our data identify strategies enabling safe CRISPR use.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii31-ii32
Author(s):  
Joydeep Mukherjee ◽  
Yongjian Tang ◽  
Tor-Christian Johanessen ◽  
Ajay Pandita ◽  
Shigeo Ohba ◽  
...  

Abstract Approximately 10% of tumors including all IDH1-mutant lower-grade glioma resolve telomeric shortening using Alternative Lengthening of Telomere (ALT) mechanism. Although the ALT process lengthens telomeres, it also generates small bits of extrachromosomal, telomere-containing DNA (ECTRs). These ECTRs can bind and activate cyclic GMP-AMP synthase (cGAS), the major cytosolic sensor of double-stranded DNA, which in turn can activate expression of stimulator of IFN genes (STING) and the interferon-based innate immune response. To limit the immune response, ALT cells inactivate the cGAS-STING pathway, although the mechanism by which this occurs is unknown. Here we show that the deubiquitinase BRCC3 links ALT telomeres to suppression of the cGAS-STING pathway and the innate immune response. Astrocytoma cells dependent on the ALT-mechanism (IDH1-mutant and ATRX-deficient genetically-modified human astrocytes and MGG119 PDX) contained ECTR and had reduced expression of the cGAS and the downstream components of the cGAS-STING pathway (STING, and IFN-β) relative to matched non-ALT (isogenic ATRX WT astrocytes and MGG152 PDX) cells lacking ECTRs. Decreased levels of cGAS in ALT cells were in turn associated with deubiquitiantion and destabilization of cGAS. The telomere-derived ECTR in ALT-dependent cells lacked two proteins normally found in ALT telomeres (TRF2 or PARP), but retained two other proteins, Mre11 and its binding partner, normally nuclear deubiquitinase BRCC3. Furthermore, either pharmacologic inhibition or genetic suppression of BRCC3 levels had no effect on ECTR levels but stabilized cGAS and activated the cGAS-STING pathway. This cGAS-mediated activation could be blocked by exogenous expression of WT BRCC3, but not by expression of a mutant BRCC3 incapable of deubiquitination. These results show that BRCC3 translocated along with ECTRs to the cytoplasm degrades cGAS and protects ALT-dependent cells from activating the innate immune response. The BRCC3-controlled cGAS-STING pathway may therefore represent a therapeutically targetable means to enhance the immune response in IDH1-mutant lower grade glioma.


2021 ◽  
Author(s):  
Hillary A. Miller ◽  
Shijiao Huang ◽  
Megan L. Schaller ◽  
Elizabeth S. Dean ◽  
Angela M. Tuckowski ◽  
...  

AbstractAn organism’s ability to perceive and respond to changes in its environment is crucial for its health and survival. Here we reveal how the most well-studied longevity intervention, dietary restriction (DR), acts in-part through a cell non-autonomous signaling pathway that is inhibited by the perception of attractive smells. Using an intestinal reporter for a key gene induced by DR but suppressed by attractive smells, we identify three compounds that block food perception in C. elegans, thereby increasing longevity as DR mimetics. These compounds clearly implicate serotonin and dopamine in limiting lifespan in response to food perception. We further identify an enteric neuron in this pathway that signals through the serotonin receptor 5-HT1A/ser-4 and dopamine receptor DRD2/dop-3. Aspects of this pathway are conserved in D. melanogaster and mammalian cells. Thus, blocking food perception through antagonism of serotonin or dopamine receptors is a plausible approach to mimic the benefits of dietary restriction.


mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
pp. e00420-18 ◽  
Author(s):  
C. E. Melia ◽  
H. M. van der Schaar ◽  
A. W. M. de Jong ◽  
H. R. Lyoo ◽  
E. J. Snijder ◽  
...  

ABSTRACTPicornaviruses induce dramatic rearrangements of endomembranes in the cells that they infect to produce dedicated platforms for viral replication. These structures, termed replication organelles (ROs), have been well characterized for theEnterovirusgenus of thePicornaviridae. However, it is unknown whether the diverse RO morphologies associated with enterovirus infection are conserved among other picornaviruses. Here, we use serial electron tomography at different stages of infection to assess the three-dimensional architecture of ROs induced by encephalomyocarditis virus (EMCV), a member of theCardiovirusgenus of the family of picornaviruses that is distantly related. Ultrastructural analyses revealed connections between early single-membrane EMCV ROs and the endoplasmic reticulum (ER), establishing the ER as a likely donor organelle for their formation. These early single-membrane ROs appear to transform into double-membrane vesicles (DMVs) as infection progresses. Both single- and double-membrane structures were found to support viral RNA synthesis, and progeny viruses accumulated in close proximity, suggesting a spatial association between RNA synthesis and virus assembly. Further, we explored the role of phosphatidylinositol 4-phosphate (PI4P), a critical host factor for both enterovirus and cardiovirus replication that has been recently found to expedite enterovirus RO formation rather than being strictly required. By exploiting an EMCV escape mutant, we found that low-PI4P conditions could also be overcome for the formation of cardiovirus ROs. Collectively, our data show that despite differences in the membrane source, there are striking similarities in the biogenesis, morphology, and transformation of cardiovirus and enterovirus ROs, which may well extend to other picornaviruses.IMPORTANCELike all positive-sense RNA viruses, picornaviruses induce the rearrangement of host cell membranes to form unique structures, or replication organelles (ROs), that support viral RNA synthesis. Here, we investigate the architecture and biogenesis of cardiovirus ROs and compare them with those induced by enteroviruses, members of the well-characterized picornavirus genusEnterovirus. The origins and dynamic morphologies of cardiovirus ROs are revealed using electron tomography, which points to the endoplasmic reticulum as the donor organelle usurped to produce single-membrane tubules and vesicles that transform into double-membrane vesicles. We show that PI4P, a critical lipid for cardiovirus and enterovirus replication, is not strictly required for the formation of cardiovirus ROs, as functional ROs with typical morphologies are formed under phosphatidylinositol 4-kinase type III alpha (PI4KA) inhibition in cells infected with an escape mutant. Our data show that the transformation from single-membrane structures to double-membrane vesicles is a conserved feature of cardiovirus and enterovirus infections that likely extends to other picornavirus genera.


Sign in / Sign up

Export Citation Format

Share Document