scholarly journals Rab35 controls formation of luminal projections required for bile canalicular morphogenesis

2021 ◽  
Vol 220 (10) ◽  
Author(s):  
Claudiu Andrei Cozmescu ◽  
Paul Gissen

Hepatocytes display a unique biaxial polarity with shared apical luminal connections between adjacent hepatocytes that merge into a network of bile canaliculi. Belicova et al. (2021. J. Cell Biol.https://doi.org/10.1083/jcb.202103003) discovered that hepatocyte apical membranes generate Rab35-dependent extensions that traverse the lumen and are essential for bile canalicular formation and maintenance.

2001 ◽  
Vol 12 (6) ◽  
pp. 1687-1697 ◽  
Author(s):  
Yoshio Nakagawa ◽  
Yukari Yamane ◽  
Takeshi Okanoue ◽  
Shoichiro Tsukita ◽  
Sachiko Tsukita

Because centrosomes were enriched in the bile canaliculi fraction from the chicken liver through their association with apical membranes, we developed a procedure for isolation of centrosomes from this fraction. With the use of the centrosomes, we generated centrosome-specific monoclonal antibodies. Three of the monoclonal antibodies recognized an antigen of ∼90 kDa. Cloning of its cDNA identified this antigen as a chicken homologue of outer dense fiber 2 protein (Odf2), which was initially identified as a sperm outer dense fiber-specific component. Exogenously expressed and endogenous Odf2 were shown to be concentrated at the centrosomes in a microtubule-independent manner in various types of cells at both light and electron microscopic levels. Odf2 exhibited a cell cycle-dependent pattern of localization and was preferentially associated with the mother centrioles in G0/G1-phase. Toward G1/S-phase before centrosome duplication, it became detectable in both mother and daughter centrioles. In the isolated bile canaliculi and centrosomes, Odf2, in contrast to other centrosomal components, was highly resistant to KI extraction. These findings indicate that Odf2 is a widespread KI-insoluble scaffold component of the centrosome matrix, which may be involved in the maturation event of daughter centrioles.


Author(s):  
Z. Hruban ◽  
J. R. Esterly ◽  
G. Dawson ◽  
A. O. Stein

Samples of a surgical liver biopsy from a patient with lactosyl ceramidosis were fixed in paraformaldehyde and postfixed in osmium tetroxide. Hepatocytes (Figs. 1, 2) contained 0.4 to 2.1 μ inclusions (LCI) limited by a single membrane containing lucid matrix and short segments of curved, lamellated and circular membranous material (Fig. 3). Numerous LCI in large connective tissue cells were up to 11 μ in diameter (Fig. 2). Heterogeneous dense bodies (“lysosomes”) were few and irregularly distributed. Rough cisternae were dilated and contained smooth vesicles and surface invaginations. Close contact with mitochondria was rare. Stacks were small and rare. Vesicular rough reticulum and glycogen rosettes were abundant. Smooth vesicular reticulum was moderately abundant. Mitochondria were round with few cristae and rare matrical granules. Golgi complex was seen rarely (Fig. 1). Microbodies with marginal plates were usual. Multivesicular bodies were very rare. Neutral lipid was rare. Nucleoli were small and perichromatin granules were large. Small bile canaliculi had few microvilli (Fig. 1).


Author(s):  
Mohinder S. Jarial

The axolotl is a strictly aquatic salamander in which the larval external gills are retained throughout life. The external gills of the adult axolotl have been studied by light and electron microscopy for ultrastructural evidence of ionic transport. The thin epidermis of the gill filaments and gill stems is composed of 3 cell types: granular cells, the basal cells and a sparce population of intervening Leydig cells. The gill epidermis is devoid of muscles, and no mitotic figures were observed in any of its cells.The granular cells cover the gill surface as a continuous layer (Fig. 1, G) and contain secretory granules of different forms, located apically (Figs.1, 2, SG). Some granules are found intimately associated with the apical membrane while others fuse with it and release their contents onto the external surface (Fig. 3). The apical membranes of the granular cells exhibit microvilli which are covered by a PAS+ fuzzy coat, termed “glycocalyx” (Fig. 2, MV).


2001 ◽  
Vol 120 (5) ◽  
pp. A531-A531
Author(s):  
R GILL ◽  
B KUNHIRAMAN ◽  
S SAKSENA ◽  
S TYAGI ◽  
P DUDEJA

1991 ◽  
Vol 261 (6) ◽  
pp. F933-F944 ◽  
Author(s):  
B. N. Ling ◽  
C. F. Hinton ◽  
D. C. Eaton

Patch-clamp methodology was applied to principal cell apical membranes of rabbit cortical collecting tubule (CCT) primary cultures grown on collagen supports in the presence of aldosterone (1.5 microM). The most frequently observed channel had a unit conductance of 3-5 pS, nonlinear current-voltage (I-V) relationship, Na permeability (PNa)-to-K permeability (PK) ratio greater than 19:1, and inward current at all applied potentials (Vapp) less than +80 mV (n = 41). Less frequently, an 8- to 10-pS channel with a linear I-V curve, PNa/PK less than 5:1, and inward current at Vapp less than +40 mV was also observed (n = 7). Luminal amiloride (0.75 microM) decreased the open probability (Po) for both of these channels. Mean open time for the high-selectivity Na+ channel was 2.1 +/- 0.5 s and for the low-selectivity Na+ channel was 50 +/- 12 ms. In primary cultures grown without aldosterone the high-selectivity Na+ channel was rarely observed (1 of 32 patches). Lastly, a 26- to 35-pS channel, nonselective for Na+ over K+, was not activated by cytoplasmic Ca2+ or voltage nor inhibited by amiloride (n = 17). We conclude that under specific growth conditions, namely permeable transporting supports and chronic mineralocorticoid hormone exposure, principal cell apical membranes of rabbit CCT primary cultures contain 1) both high-selectivity and low-selectivity, amiloride-inhibitable Na+ channels and 2) amiloride-insensitive, nonselective cation channels.


1985 ◽  
Vol 248 (4) ◽  
pp. G443-G449 ◽  
Author(s):  
P. K. Rangachari ◽  
J. Matthews

In nitrate solutions, Ag+ added to the luminal side had marked effects on transmucosal conductance and potential difference (PD). Conductance increased quickly (85% within 60 s, 420% by 10 min); PD increased initially (11% within 30 s) and then fell precipitously (58% decreased within 2 min, 85% decreased by 10 min). During this period, no increase in mannitol permeability was found. These changes were essentially similar in histamine-stimulated, spontaneously secreting, and metiamide-inhibited fundic mucosae. Replacement of luminal Na+ by choline had no effect on the changes observed. Similar changes occurred also in the antrum. In SO2-4 media the increases in conductance occurred more slowly (40% within 2 min, 150% after 10 min); PD increased initially for 4-6 min and then slowly declined over 60 min to 74% of control values. After Ag+ treatment, replacement of luminal SO2-4 by nitrate led to an inversion of the PD by up to 20 mV (serosa -ve). Brief exposure of the mucosa (2 min) to Ag+ did not show any obvious damage, although surface cells were damaged following more prolonged exposures. After a 4-min treatment with Ag+, electrical and secretory parameters showed substantial recoveries. Ag+ appears to increase anion conductance; these effects appear to occur on the apical membranes of tubular and/or surface cells of the fundus and antrum.


1993 ◽  
Vol 105 (1) ◽  
pp. 243-253
Author(s):  
M. Fuchs ◽  
M.K. Jones ◽  
K.L. Williams

Ultrarapid freezing (RF) followed by freeze-substitution (FS) provide superior preservation of the Dictyostelium discoideum multicellular slug tissue over conventional methods of chemical fixation at room temperature. The peripheral cells of slugs prepared by RF and FS form a tight layer of flattened cells. This cell layer resembles epithelia of other multicellular organisms in that it has close junctional contact between cells associated with the extracellular matrix (ECM, slime sheath). This is the first report that clearly demonstrates the existence of such peripheral cellular specialisation in this otherwise well-studied model system. Junctional contacts between adjacent cells mean that there is no intercellular space evident between apical membranes of apposing cells, and basally the intermembraneous space between peripheral cells is less than 10 nm. By contrast, the intercellular space between internal cells is approximately 10–25 nm. The shape of the peripheral cells varies with their location around the slug. In the posterior prespore zone, the peripheral cells are squamous and exhibit polarity along their antero-posterior axis. In the anterior prestalk zone, peripheral cells are less flattened, project irregular filipodia between internal cells, and are polarised along their apical-basal axis. Colloidal gold immunocytochemistry with the markers MUD1, MUD50 and MUD62 demonstrated that the peripheral layer is formed of prestalk cells in the anterior region and ventrum, and mostly prespore cells along the dorsum. Thus, the peripheral layer, while having specific cell classes in different regions, is not differentiation-specific. Rather, it appears that the structure of these epithelium-like cells is influenced by interaction with molecules of the ECM (sheath).


1989 ◽  
Vol 257 (5) ◽  
pp. R967-R972
Author(s):  
T. J. Bradley

Urine formation in insects occurs in the Malpighian tubules by means of active ion transport and osmotically coupled water flow. The rates of urine formation can vary with time and can be modulated by diuretic hormones, developmental events, and intracellular parasitism. This paper reviews a number of recent studies in which it has been demonstrated that variations in transport rate are associated with substantial changes in tubule ultrastructure in the form of membrane insertion into and deletion from the apical microvilli. The principal driving force for fluid movement in Malpighian tubules is thought to be a common cation pump located in the apical membranes. It is proposed that modulation of the apical microvillar membrane may reflect regulation by the cells of the number of common cation pump units involved in fluid secretion.


Sign in / Sign up

Export Citation Format

Share Document