scholarly journals ZYGOTE FORMATION IN ASCARIS LUMBRICOIDES (NEMATODA)

1968 ◽  
Vol 39 (1) ◽  
pp. 119-134 ◽  
Author(s):  
W. Eugene Foor

Ultrastructural observations of the in utero sperm of Ascaris lumbricoides reveal that it consists of a relatively clear, ameboid anterior region and a conical posterior region containing numerous surface membrane specializations, dense mitochondria, a lipid-like refringent body of variable size, and a dense nucleus which lacks an apparent nuclear envelope. No acrosomal complex was observed. Pseudopods emanating from the anterior cytoplasm make first contact with the primary oocytes and appear to be responsible for the localized removal of the extraneous coat covering the oolemma. Subsequently the gamete membranes interdigitate and finally fuse. Because this pseudopodial action appears similar to that reported for the acrosomal filaments in flagellated sperm, the anterior region of the Ascaris sperm is thought to serve an acrosomal function. Following gamete-membrane fusion, the sperm nucleus acquires a particulate appearance and becomes disorganized. Once inside the oocyte, the sperm cytoplasm consists of dense mitochondria, ribosomes, and vesicles derived from the surface membrane specializations. The refringent body, whose contents possibly contribute to the synthesis of ribosomes, is usually absent by the time the sperm cytoplasm attains a central position in the egg.

1963 ◽  
Vol 19 (3) ◽  
pp. 501-518 ◽  
Author(s):  
Laura Hunter Colwin ◽  
Arthur L. Colwin

An earlier paper showed that in Saccoglossus the acrosomal tubule makes contact with the egg plasma membrane. The present paper includes evidence that the sperm and egg plasma membranes fuse to establish the single continuous zygote membrane which, consequently, is a mosaic. Contrary to the general hypothesis of Tyler, pinocytosis or phagocytosis plays no role in zygote formation. Contact between the gametes is actually between two newly exposed surfaces: in the spermatozoon, the surface was formerly the interior of the acrosomal vesicle; in the egg, it was membrane previously covered by the egg envelopes. The concept that all the events of fertilization are mediated by a fertilizin-antifertilizin reaction seems an oversimplification of events actually observed: rather, the evidence indicates that a series of specific biochemical interactions probably would be involved. Gamete membrane fusion permits sperm periacrosomal material to meet the egg cytoplasm; if an activating substance exists in the spermatozoon it probably is periacrosomal rather than acrosomal in origin. The contents of the acrosome are expended in the process of delivering the sperm plasma membrane to the egg plasma membrane. After these membranes coalesce, the sperm nucleus and other internal sperm structures move into the egg cytoplasm.


2005 ◽  
Vol 79 (12) ◽  
pp. 7419-7430 ◽  
Author(s):  
Aleida Perez ◽  
Qing-Xue Li ◽  
Pilar Perez-Romero ◽  
Gregory DeLassus ◽  
Santiago R. Lopez ◽  
...  

ABSTRACT We isolated a human cDNA by expression cloning and characterized its gene product as a new human protein that enables entry and infection of herpes simplex virus (HSV). The gene, designated hfl-B5, encodes a type II cell surface membrane protein, B5, that is broadly expressed in human primary tissue and cell lines. It contains a high-scoring heptad repeat at the extracellular C terminus that is predicted to form an α-helix for coiled coils like those in cellular SNAREs or in some viral fusion proteins. A synthetic 30-mer peptide that has the same sequence as the heptad repeat α-helix blocks HSV infection of B5-expressing porcine cells and human HEp-2 cells. Transient expression of human B5 in HEp-2 cells results in increased polykarocyte formation even in the absence of viral proteins. The B5 protein fulfills all criteria as a receptor or coreceptor for HSV entry. Use by HSV of a human cellular receptor, such as B5, that contains putative membrane fusion domains provides an example where a pathogenic virus with broad tropism has usurped a widely expressed cellular protein to function in infection at events that lead to membrane fusion.


2020 ◽  
Author(s):  
IC Kos-Braun ◽  
B Gerlach ◽  
C Pitzer

AbstractRecently, it has become evident that academic research faces issues with the reproducibility of research data. It is critical to understand the underlying causes in order to remedy this situation. Core Facilities (CFs) have a central position in the research infrastructure and therefore they are ideally suited to promote and disseminate good research standards through their users. However, there are currently no clear guidelines directly applicable to academic CFs. To identify the most important factors for research quality, we polled 253 CFs across Europe about their practices and analysed in detail the interaction process between CFs and their users, from the first contact to the publication of the results. Although the survey showed that CFs are dedicated to train and advise their users, it highlighted the following areas, the improvement of which would directly increase research quality: 1) motivating users to follow the advice and procedures for best research practice, 2) providing clear guidance on data management practices, 3) improving communication along the whole research process and 4) clearly defining the responsibilities of each party.


1954 ◽  
Vol 100 (3) ◽  
pp. 301-310 ◽  
Author(s):  
Councilman Morgan ◽  
Solon A. Ellison ◽  
Harry M. Rose ◽  
Dan H. Moore

Vaccinia and fowl pox viruses were visualized by the electron microscope in sections of infected chorioallantoic membrane of chicken embryos. The viruses were of similar structure and size, averaging 200 x 300 mµ with considerable individual variation. Intracytoplasmic viral particles contained a dense, nucleus-like body (nucleoid) separated from granular material (viroplasm) by a zone of lesser density. They were enclosed by a single membrane. Near the surface of the host cell and in the extracellular space the particles consisted of a central body of variable shape and density enclosed by a double membrane. The initial sites of development were confined to the cytoplasm of the host cell. Before release from the host cell the viral nucleoids appeared to enlarge and to occupy a central position within the particle, which became enclosed by a double limiting membrane. The brick-shaped forms found after removal of the embedding plastic from thick sections indicated that drying caused characteristic distortion of certain viral particles.


Author(s):  
D. James Morré ◽  
Charles E. Bracker ◽  
William J. VanDerWoude

Calcium ions in the concentration range 5-100 mM inhibit auxin-induced cell elongation and wall extensibility of plant stems. Inhibition of wall extensibility requires that the tissue be living; growth inhibition cannot be explained on the basis of cross-linking of carboxyl groups of cell wall uronides by calcium ions. In this study, ultrastructural evidence was sought for an interaction of calcium ions with some component other than the wall at the cell surface of soybean (Glycine max (L.) Merr.) hypocotyls.


Author(s):  
Anthony Demsey ◽  
Christopher W. Stackpole

The murine leukemia viruses are type-C oncornaviruses, and their release from the host cell involves a “budding” process in which the newly-forming, RNA-containing virus core becomes enveloped by modified cell surface membrane. Previous studies revealed that the released virions possess a dense array of 10 nm globular projections (“knobs”) on this envelope surface, and that these knobs contain a 70, 000 MW glycoprotein (gp70) of viral origin. Taking advantage of this distinctive structural formation, we have developed a procedure for freeze-drying and replication of intact cells which reveals surface detail superior to other surface replica techniques, and sufficient to detect even early stages of virus budding by localized aggregation of these knobs on the cell surface.Briefly, cells growing in monolayer are seeded onto round glass coverslips 10-12 mm in diameter. After a period of growth, cells are fixed in situ for one hour, usually with 1% OsO4 in 0. 1 M cacodylate buffer, and rinsed in distilled water.


Author(s):  
A. C. Enders

The alteration in membrane relationships seen at implantation include 1) interaction between cytotrophoblast cells to form syncytial trophoblast and addition to the syncytium by subsequent fusion of cytotrophoblast cells, 2) formation of a wide variety of functional complex relationships by trophoblast with uterine epithelial cells in the process of invasion of the endometrium, and 3) in the case of the rabbit, fusion of some uterine epithelial cells with the trophoblast.Formation of syncytium is apparently a membrane fusion phenomenon in which rapid confluence of cytoplasm often results in isolation of residual membrane within masses of syncytial trophoblast. Often the last areas of membrane to disappear are those including a desmosome where the cell membranes are apparently held apart from fusion.


Author(s):  
A. Sosa ◽  
L. Calzada

The dependence of nuclear metabolism on the function of the nuclear membrane is not well understood. Whether or not the function of the nuclear membrane is partial or totally responsible of the repressed template activity of human sperm nucleus has not at present been elucidated. One of the membrane-bound enzymatic activities which is concerned with the mechanisms whereby substances are thought to cross cell membranes is adenosintriphosphatase (ATPase). This prompted its characterization and distribution by high resolution photogrammetry on isolated human sperm nuclei. Isolated human spermatozoa nuclei were obtained as previously described. ATPase activity was demonstrated by the method of Wachstein and Meisel modified by Marchesi and Palade. ATPase activity was identified as dense and irregularly distributed granules confined to the internal leaflet of the nuclear membrane. Within the nucleus the appearance of the reaction product occurs as homogenous and dense precipitates in the interchromatin space.


Author(s):  
Michael Edidin

Cell surface membranes are based on a fluid lipid bilayer and models of the membranes' organization have emphasised the possibilities for lateral motion of membrane lipids and proteins within the bilayer. Two recent trends in cell and membrane biology make us consider ways in which membrane organization works against its inherent fluidity, localizing both lipids and proteins into discrete domains. There is evidence for such domains, even in cells without obvious morphological polarity and organization [Table 1]. Cells that are morphologically polarised, for example epithelial cells, raise the issue of membrane domains in an accute form.The technique of fluorescence photobleaching and recovery, FPR, was developed to measure lateral diffusion of membrane components. It has also proven to be a powerful tool for the analysis of constraints to lateral mobility. FPR resolves several sorts of membrane domains, all on the micrometer scale, in several different cell types.


Author(s):  
Robert D. Nelson ◽  
Sharon R. Hasslen ◽  
Stanley L. Erlandsen

Receptors are commonly defined in terms of number per cell, affinity for ligand, chemical structure, mode of attachment to the cell surface, and mechanism of signal transduction. We propose to show that knowledge of spatial distribution of receptors on the cell surface can provide additional clues to their function and components of functional control.L-selectin and Mac-1 denote two receptor populations on the neutrophil surface that mediate neutrophil-endothelial cell adherence interactions and provide for targeting of neutrophil recruitment to sites of inflammation. We have studied the spatial distributions of these receptors using LVSEM and backscatter imaging of isolated human neutrophils stained with mouse anti-receptor (primary) antibody and goat anti-mouse (secondary) antibody conjugated to 12 nm colloidal gold. This combination of techniques provides for three-dimensional analysis of the expression of these receptors on different surface membrane domains of the neutrophil: the ruffles and microvilli that project from the cell surface, and the cell body between these projecting structures.


Sign in / Sign up

Export Citation Format

Share Document