scholarly journals Immune mechanisms in leukemia role of the Ia antigens.

1977 ◽  
Vol 145 (4) ◽  
pp. 1077-1081 ◽  
Author(s):  
O A Lukasewycz ◽  
J A Frelinger

We have shown that the selective removal of cells possessing Ia determinants coded by the I-A, I-B, and I-J regions of the H-2 gene complex completely abrogates the protective capacity of nylon-wool-purified T lymphocytes against leukemic challenge. This suggests that the Ia antigen bearing T cells play an important role in tumor immunity.

1976 ◽  
Vol 144 (4) ◽  
pp. 1141-1146 ◽  
Author(s):  
J A Frelinger ◽  
J E Niederhuber ◽  
D C Shreffler

We have shown that the Ia determinants expressed on nylon wool-purified T lymphocytes reactive to concanavalin A (Con A) in serum-free media are coded in a single I subregion of the H-2 gene complex. This region, I-J, is defined by two pairs of intra-H-2 recombinant haplotypes: H-2t3, H-2t4 and H-2i3, H-2i5, carried by B10.HTT, B10.S(9R), B10.A(3R), AND B10.A(5R), respectively. No activity against Con A-reactive T cells has been detected in any antiserum that was produced in strain combinations which shared a common I-J region. This suggests that Ia antigens expressed on Con A-reactive T cells are restricted to the I-J subregion.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Bernardo Lopez ◽  
Galina Petrova ◽  
Justine M Abais-Battad ◽  
Hayley Lund ◽  
Daniel Fehrenbach ◽  
...  

Epidemiological data indicates that acute kidney injury (AKI) is an independent risk factor for the development of hypertension and chronic kidney disease in patients. Previous studies demonstrated that rats develop sodium-dependent hypertension and kidney damage following experimental AKI induced by a renal ischemia-reperfusion (IR) insult; furthermore, these high salt deleterious effects could be blunted by administration of immunosuppressive agents. The present study was performed on Dahl SS (SS) rats and SS rats with a null mutation in the CD247 gene (SS-CD247) leading to depletion of T-lymphocytes in order to specifically examine the role of T cells in this response (n=5-6 rats/group). As assessed by serum creatinine (SCr) levels, no difference was observed in the initial response to IR injury between SS and SS-CD247: SCr increased from 0.44±0.03 to 2.16±0.32 mg/dl in SS rats 24 hours after an initial 30 minute period of renal ischemia and returned to control levels after 8 days of recovery. Moreover, no differences were noted in mean arterial pressure (MAP) or albumin excretion rate (UAlb) between SS and SS-CD247 after 43 days of recovery from IR injury while the rats were maintained on a low salt (0.4% NaCl) diet. When the rats were fed a 4.0% NaCl diet for two weeks, MAP and UAlb significantly increased in the sham SS to 178±9 mmHg and 189±25 mg/day, respectively; values significantly greater than observed in the sham SS-CD247 rats (148±2 mmHg and 87±17 mg/day). As expected, the SS rats recovered from IR injury demonstrated an exaggerated increase in MAP (peaking at 183±2 mmHg) and UAlb (275±54 mg/day) in response to high salt. There was no difference in the number of total CD3+ lymphocytes in the kidneys of IR and sham SS after high salt, though the ratio of CD4+/CD8+ T cells was increased in the IR group. Compared to sham CD247, an exaggerated elevation of MAP (157±9 mmHg) and UAlb (210±32 mg/day) was also observed in the SS-CD247 rats recovered from IR injury, demonstrating enhanced responsiveness following IR injury in animals lacking T cells. These data indicate that T lymphocytes amplify salt-sensitive hypertension and renal damage, but other mechanisms also mediate the salt-sensitive hypertension and renal damage that occurs in animals recovered from IR injury.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Fei Fei Guo ◽  
Jiu Wei Cui

Earlier studies on elucidating the role of lymphocytes in tumor immunity predominantly focused on T cells. However, the role of B cells in tumor immunity has increasingly received better attention in recent studies. The B cells that infiltrate tumor tissues are called tumor-infiltrating B cells (TIBs). It is found that TIBs play a multifaceted dual role in regulating tumor immunity rather than just tumor inhibition or promotion. In this article, latest research advances focusing on the relationship between TIBs and tumor complexity are reviewed, and light is shed on some novel ideas for exploiting TIBs as a possible tumor biomarker and potential therapeutic target against tumors.


2006 ◽  
Vol 26 (4) ◽  
pp. 438-448 ◽  
Author(s):  
Amir Glik ◽  
Amos Douvdevani

T cells are an important part of the acquired immune response and target specific antigen with their T cell receptor. The peritoneum is a special milieu within which T cells react. We describe briefly the anatomy important for T cell function. T cell biology including antigen presentation, T cell activation, and the different T cell subpopulations are reviewed. We also define innate and acquired immunity and describe the role of polymorphonuclear cells and peritoneal mesothelial cells in the regulation of leukocyte population recruitment during peritonitis. We focus particularly on peritoneal lymphocytes and compare them to the regular lymphocyte populations in the circulation. We illustrate the role of PMCs in antigen presentation and discuss the changes of CD4+ helper T cell subtypes (Th1 and Th2) during peritoneal dialysis. The role of CD8+ cytotoxic T lymphocytes and their possible destructive role for the peritoneal membrane modified by advanced glycation end products are discussed. Polymorphonuclear cells play an important role in the regulation of inflammation and immunity. We describe their possible role in supporting T cells and particularly for generating memory CD8+ T cells by secretion of interleukin-15, a potent T cell growth factor. Light is shed on γδ T cells, a special T cell population that is able to recognize antigens without the restriction of antigen presentation. We end our review with a description of regulatory T cells. This cell population is extremely important in preventing autoimmunity and in the regulation of acquired immunity.


1975 ◽  
Vol 142 (5) ◽  
pp. 1165-1179 ◽  
Author(s):  
S K Pierce ◽  
N R Klinman

The ability of T cells to enhance the response of syngeneic and allogeneic B cells to thymus-dependent hapten-carrier conjugates was analyzed. This analysis was carried out on individual primary B cells in splenic fragment cultures derived from irradiated reconstituted mice. This system has several advantages: (a) the response of the B cells is entirely dependent on carrier priming of the irradiated recipient; (b) this B-cell response can be quantitated in terms of the number of responding cells; and (c) very small B-cell responses can be readily detected and analyzed. The results indicate that the majority of hapten-specific B cells were stimulated in allogeneic and syngeneic recipients only if these recipients were previously carrier primed. The number of B cells responding in carrier-primed allogeneic recipients was 60-70% of that in syngeneic carrier-primed recipients. The antibody-forming cell clones resulting from B cells stimulated in the allogeneic environment produced small amounts of antibody and antibody solely of the IgM immunoglobulin class, while the larger responses in syngeneic recipients were predominantly IgG1 or IgM plus IgG1. The capacity of collaborative interactions between carrier-primed T cells and primary B cells to yield IgG1 antibody-producing clones was shown to be dependent on syngeny between these cells in the H-2 gene complex. It is concluded that: (a) B cells can be triggered by T-dependent antigens to clone formation through collaboration with T cells which differ at the H-2 complex as long as these T cells recognize the antigen; (b) the immunoglobulin class produced by the progeny of stimulated B cells generally depends on the nature of the stimulatory event rather than the nature of the B cell itself; and (c) stimulation to IgG1 production is dependent on syngeny between the collaborating T and B cells probably within the Ir-1A region. The role of the Ia antigens in the formation of IgG1-producing clones is not yet clear; Ia identity could permit IgG1 production or, conversely, nonidentity of Ia could induce all allogeneic interactions which prohibit IgG1 production.


1994 ◽  
Vol 180 (4) ◽  
pp. 1273-1282 ◽  
Author(s):  
M B Graham ◽  
V L Braciale ◽  
T J Braciale

T lymphocytes play a primary role in recovery from viral infections and in antiviral immunity. Although viral-specific CD8+ and CD4+ T cells have been shown to be able to lyse virally infected targets in vitro and promote recovery from lethal infection in vivo, the role of CD4+ T lymphocytes and their mechanism(s) of action in viral immunity are not well understood. The ability to further dissect the role that CD4+ T cells play in the immune response to a number of pathogens has been greatly enhanced by evidence for more extensive heterogeneity among the CD4+ T lymphocytes. To further examine the role of CD4+ T cells in the immune response to influenza infection, we have generated influenza virus-specific CD4+ T cell clones from influenza-primed BALB/c mice with differential cytokine secretion profiles that are defined as T helper type 1 (Th1) clones by the production of interleukin 2 (IL-2) and interferon gamma (IFN-gamma), or as Th2 clones by the production of IL-4, IL-5, and IL-10. Our studies have revealed that Th1 clones are cytolytic in vitro and protective against lethal challenge with virus in vivo, whereas Th2 clones are noncytolytic and not protective. Upon further evaluation of these clonal populations we have shown that not only are the Th2 clones nonprotective, but that pulmonary pathology is exacerbated as compared with control mice as evidenced by delayed viral clearance and massive pulmonary eosinophilia. These data suggest that virus-specific CD4+ T cells of the Th2 subset may not play a primary role in virus clearance and recovery and may lead to immune mediated potentiation of injury.


1980 ◽  
Vol 152 (4) ◽  
pp. 823-841 ◽  
Author(s):  
E Fernandez-Cruz ◽  
B A Woda ◽  
J D Feldman

Established subcutaneous Moloney sarcomas (MST-1) of large size and long duration were eliminated from syngeneic rats by intravenous infusion of varying numbers of specific syngeneic effector T lymphocytes. Spleen cells from BN rats in which tumor had regressed were cultured in an in vitro mixed lymphocyte tumor cell culture (MLTC) to augment cytotoxicity of effector cells. In the MLTC a T cell subset was expanded in response to MST-1 antigens and transformed into blast elements. With these changes, there was an increase in the W3/25 antigen on the T cell surface, a decrease of W3/13 antigen, and an increase in the number of T cells with Ia antigens. The subset associated with elimination of established tumors was a blast T cell W3/25+, W3/13+, as detected by monoclonal antibodies to rat T antigens. The W3/25+ subset was poorly cytotoxic in vitro for MST-1 and apparently functioned in vivo as an amplifier or helper cell in the tumor-bearing host. The W3/25- population was a melange of cells that included (W3/13+, W3/25-) T cells, null cells, Ig+ cells, and macrophages, and was associated with enhancement of tumor in vivo, suggesting the presence of suppressor cells.


1973 ◽  
Vol 138 (5) ◽  
pp. 1213-1229 ◽  
Author(s):  
Ethan M. Shevach ◽  
Alan S. Rosenthal

A number of recent studies have suggested that the main functional role of the product of the immune response (Ir) genes is in the process of antigen recognition by the T lymphocyte. The observation in the accompanying report that the interaction of macrophage-associated antigen with immune T lymphocytes requires that both cells share histocompatibility antigens raised the question as to whether the macrophage played a role in the genetic control of the immune response or even if the macrophage were the primary cell in which the product of the Ir gene is expressed. In the current study, parental macrophages were pulsed with an antigen, the response to which is controlled by an Ir gene lacking in that parent; these macrophages were then mixed with T cells derived from the (nonresponder x responder)F1 and the resultant stimulation was measured. No stimulation was seen when column-purified F1 lymph node lymphocytes were mixed with antigen-pulsed macrophages from the nonresponder parent. However, when the highly reactive peritoneal exudate lymphocyte population was used as the indicator cells, parental macrophages pulsed with an antigen whose Ir gene they lacked were capable of initiating F1 T-cell proliferation. The magnitude of stimulation was approximately 1/10 that seen when macrophages from either the responder parent or the F1 were used. In order to explain this observation, we hypothesize that antigen recognition sites on the T lymphocyte are physically related to a macrophage-binding site and both are linked to the serologically determined histocompatibility antigens. Thus, parental macrophages pulsed with an antigen, whose Ir gene they lack, activate F1 cells poorly because the recognition sites for the antigen are physically related to the macrophage-binding site of the responder parent while the main contacts between the cells are at the nonresponder binding sites. Experiments performed with alloantisera lend support to this hypothesis. Thus, when parental macrophages are pulsed with any antigen and added to F1 T cells, an alloantiserum directed against parental histocompatibility antigens reacts with both the lymphocyte and the macrophage and thereby inhibits macrophage-lymphocyte interaction and abolishes antigen-induced lymphocyte transformation. When the alloantisera are directed at determinants present solely on the T lymphocyte, they only inhibit the recognition of antigens controlled by the Ir gene linked to the histocompatibility antigen against which they are directed. We conclude from these studies that antigen recognition by the T lymphocyte is a complex multicellular event involving more than simple antigen binding to a specific lymphocyte receptor.


Blood ◽  
2010 ◽  
Vol 115 (2) ◽  
pp. 265-273 ◽  
Author(s):  
Graziella Curtale ◽  
Franca Citarella ◽  
Claudia Carissimi ◽  
Marina Goldoni ◽  
Nicoletta Carucci ◽  
...  

Abstract Activation of the T cell–mediated immune response has been associated with changes in the expression of specific microRNAs (miRNAs). However, the role of miRNAs in the development of an effective immune response is just beginning to be explored. This study focuses on the functional role of miR-146a in T lymphocyte–mediated immune response and provides interesting clues on the transcriptional regulation of miR-146a during T-cell activation. We show that miR-146a is low in human naive T cells and is abundantly expressed in human memory T cells; consistently, miR-146a is induced in human primary T lymphocytes upon T-cell receptor (TCR) stimulation. Moreover, we identified NF-kB and c-ETS binding sites as required for the induction of miR-146a transcription upon TCR engagement. Our results demonstrate that several signaling pathways, other than inflammation, are influenced by miR-146a. In particular, we provide experimental evidence that miR-146a modulates activation-induced cell death (AICD), acting as an antiapoptotic factor, and that Fas-associated death domain (FADD) is a target of miR-146a. Furthermore, miR-146a enforced expression impairs both activator protein 1 (AP-1) activity and interleukin-2 (IL-2) production induced by TCR engagement, thus suggesting a role of this miRNA in the modulation of adaptive immunity.


Sign in / Sign up

Export Citation Format

Share Document